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Abstract

The rotor walk is a derandomized version of the random walk on
a graph. On successive visits to any given vertex, the walker is routed
to each of the neighboring vertices in some fixed cyclic order, rather
than to a random sequence of neighbors. The concept generalizes nat-
urally to countable Markov chains. Subject to general conditions, we
prove that many natural quantities associated with the rotor walk (in-
cluding normalized hitting frequencies, hitting times and occupation
frequencies) concentrate around their expected values for the random
walk. Furthermore, the concentration is stronger than that associated
with repeated runs of the random walk; the discrepancy is at most
C/n after n runs (for an explicit constant C), rather than c/

√
n.

1 Introduction

Let X0, X1, . . . be a Markov chain on a countable set V with transition proba-
bilities p : V ×V → [0, 1] (see e.g. [20] for background). We call the elements
of V vertices. We write Pu for the law of the Markov chain started at vertex
u (so Pu-a.s. we have X0 = u).
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Figure 1: Steps 0, . . . , 7 of a rotor walk associated with the simple random
walk on a graph with 4 vertices. The thin lines represent the edges of graph,
the circle is the particle location, and the thick arrows are the rotors. The
rotor mechanism in this case is such that each rotor successively points to
the vertex’s neighbors in anticlockwise order.

The rotor-router walk or rotor walk is a deterministic cellular au-
tomaton associated with the Markov chain, defined as follows. Assume that
all transition probabilities p(u, v) are rational (later we will address relax-
ation of this assumption) and that for each u there are only finitely many v
such that p(u, v) > 0. To each vertex u we associate a positive integer d(u)
and a finite sequence of (not necessarily distinct) vertices u(1), . . . , u(d(u)),
called the successors of u, in such a way that

p(u, v) =
#{i : u(i) = v}

d(u)
for all u, v ∈ V. (1)

(This is clearly possible under the given assumptions; d(u) may be taken to
be the lowest common denominator of the transition probabilities from u.)
The set V together with the quantities d(u) and the assignments of successors
will sometimes be called the rotor mechanism.

A rotor configuration is a map r that assigns to each vertex v an in-
teger r(v) ∈ {1, . . . , d(v)}. (We think of an arrow or rotor located at each
vertex, with the rotor at v pointing to vertex v(r(v))). We let a rotor config-
uration evolve in time, in conjunction with the position of a particle moving
from vertex to vertex: the rotor at the current location v of the particle is
incremented, and the particle then moves in the new rotor direction. More
formally, given a rotor mechanism, an initial particle location x0 ∈ V and
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an initial rotor configuration r0, the rotor walk is a sequence of vertices
x0, x1, . . . ∈ V (called particle locations) together with rotor configura-
tions r0, r1, . . ., constructed inductively as follows. Given xt and rt at time t
we set:

(i) rt+1(v) :=

{
(rt(v) + 1) mod d(v), v = xt;

rt(v), v 6= xt

(increment the rotor at the current particle location); and

(ii) xt+1 := (xt)
(rt+1(xt))

(move the particle in the new rotor direction).

See Figure 1 for a simple illustration of the mechanism.
Given a rotor walk, write

nt(v) := #
{
s ∈ [0, t− 1] : xs = v

}

for the number of times the particle visits vertex v before (but not including)
time t.

We next state general results, Theorems 1–4, relating basic Markov chain
objects to their rotor walk analogues (under suitable conditions). We then
state a more refined result (Theorem 5) for the important special case of sim-
ple random walk on Z2, followed by extensions to infinite times (Theorem 8)
and irrational transition probabilities (Theorem 12). We postpone discussion
of history and background to the end of the introduction, and proofs to the
later sections.

1.1 Hitting probabilities

Let Tv := min{t ≥ 0 : Xt = v} be the first hitting time of vertex v by the
Markov chain (where min ∅ := ∞). Fix two distinct vertices b, c and consider
the hitting probability

h(v) = hb,c(v) := Pv(Tb < Tc). (2)

Note that h(b) = 1 and h(c) = 0. In order to connect hitting probabilities
with rotor walks, fix a starting vertex a 6∈ {b, c}, and modify the transition
probabilities from b and c so that p(b, a) = p(c, a) = 1. (Thus, after hitting
b or c, the particle is returned to a.) Note that this modification does not
change the function h. Modify the rotor mechanism accordingly by setting
d(b) = d(c) = 1 and b(1) = c(1) = a. Let x0, x1, . . . be a rotor walk associated
with the modified chain. The following is our most basic result.
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Theorem 1 (Hitting probabilities). Under the above assumptions, suppose
that the quantity

K1 := 1 +
1

2

∑

u∈V \{b,c},
v∈V

d(u)p(u, v)|h(u)− h(v)|

is finite. Then for any rotor walk and all t,

∣∣∣∣h(a)− nt(b)

nt(b) + nt(c)

∣∣∣∣ ≤
K1

nt(b) + nt(c)
.

Theorem 1 implies that the proportion of times that the rotor walk hits
b as opposed to c converges to the Markov chain hitting probability h(a),
provided the rotor walk hits {b, c} infinitely often (we will consider cases
where this does not hold in the later discussion on transfinite rotor walks).
Furthermore, after n visits to {b, c}, the discrepancy in this convergence is at
most K/n for a fixed constant K. In contrast, for the proportion of visits by
the Markov chain itself, the discrepancy is asymptotically a random multiple
of 1/

√
n (by the central limit theorem).

The condition K1 < ∞ holds in particular whenever V is finite, as well
as in many cases when it is infinite; for examples see [22].

In the case when the Markov chain (before modification) is a simple ran-
dom walk on an undirected graph G = (V,E) (thus, p(u, v) equals 1/d(u) if
(u, v) is an edge, and 0 otherwise, with d(u) being the degree of u), we obtain
the particularly simple bound K1 ≤ 1 +

∑
(u,v)∈E |h(u)− h(v)|.

Theorem 1 can be easily adapted to give similar results for the probability
of returning to b before hitting c when started at a = b, and for the probability
of hitting one set of vertices before another. This can be done either by
adapting the proof or by adding appropriate extra vertices and then appealing
to Theorem 1. For brevity we omit such variations.

We next discuss extensions of Theorem 1 in the following directions: hit-
ting times and stationary distributions, an example where K1 = ∞, cases
where the particle can escape to infinity, and irrational transition probabili-
ties.
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1.2 Hitting times

Fix a vertex b and let
k(v) = kb(v) := EvTb (3)

be its expected hitting time. Fix also an initial vertex a 6= b and modify
the transition probabilities from b so that p(b, a) = 1. (Then k(a) is also the
expected return time from b to b in the reduced chain in which the vertices
a and b are conflated.) Let x0, x1, . . . be a rotor walk associated with the
modified chain.

Theorem 2 (Hitting times). Under the above assumptions, suppose that V
is finite, and let

K2 := max
v∈V

k(v) +
1

2

∑

u∈V \{b},
v∈V

d(u)p(u, v)|k(u)− k(v)− 1|.

Then for any rotor walk and all t,
∣∣∣∣(k(a) + 1)− t

nt(b)

∣∣∣∣ ≤
K2

nt(b)
.

Thus the average time for the rotor walk to get from a to b concentrates
around the expected hitting time. The “+1” term corresponds to the time
step to move from b to a.

Note that, in contrast with Theorem 1, in the above result we require
V to be finite. Leaving aside some degenerate cases, such a bound cannot
hold when V is infinite. Indeed, if V is infinite and the Markov chain is
irreducible, then |(k(a)+1)nt(b)−t| is unbounded in t, since the rotor walk has
arbitrarily long excursions between successive visits to b; hence the conclusion
of Theorem 2 cannot hold (for any constant K2) in this case. In contrast, in
the next result we again allow V to be infinite.

1.3 Stationary vectors

Suppose that the Markov chain is irreducible and recurrent, and let π : V →
(0,∞) be a stationary vector (so that πp = π as a matrix product). Let
x0, x1, . . . be an associated rotor walk. Fix two vertices b 6= c and let h = hb,c

be as in (2) above. Also let T+
u := min{t ≥ 1 : Xt = u} denote the first

return time to u, and define the escape probability eu,v := Pu(Tv < T+
u ).
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Theorem 3 (Occupation frequencies). For any irreducible, recurrent Markov
chain, with the above notation, suppose that the quantity

K3 := 1 +
1

2

(
d(b) + d(c) +

∑
u,v∈V

d(u)p(u, v)|h(u)− h(v)|
)

is finite. Then for all t,
∣∣∣nt(b)

π(b)
− nt(c)

π(c)

∣∣∣ ≤ K3

π(b)eb,c

.

Thus, the ratio of times spent at different vertices by the rotor walk
concentrates around the ratio of corresponding components of the stationary
vector.

Now suppose that the Markov chain is irreducible and positive recurrent,
and let π be the stationary distribution (so that

∑
v∈V π(v) = 1). Fix a

vertex b and let k = kb be as in (3). The following result states that the
proportion of time spent by the rotor walk at b concentrates around π(b).

Theorem 4 (Stationary distribution). For an irreducible positive recurrent
Markov chain with V finite, with the above notation, let

K4 := max
v∈V

k(v) +
1

2

(d(b)

π(b)
+

∑
u,v∈V

d(u)p(u, v)|k(u)− k(v)− 1|
)
.

Then for all t, ∣∣∣π(b)− nt(b)

t

∣∣∣ ≤ K4π(b)

t
.

1.4 Logarithmic discrepancy for walks on Z2

While Theorem 1 requires the quantity K1 to be finite, experiments suggest
that similar conclusions hold in many cases where it is infinite. We next treat
one interesting example in which such a conclusion provably holds, but with
an additional logarithmic factor in the bound on the discrepancy. (Additional
such examples will appear in [22]).

Consider simple symmetric random walk on the square lattice Z2. That
is, let V = Z2, and let p(u, v) := 1/4 for all u, v ∈ V with ‖u− v‖1 = 1 and
p(u, v) := 0 otherwise. Let each rotor rotate anticlockwise; that is for each
u ∈ V , we set d(u) := 4 and

u(i) := u + (cos iπ
2
, sin iπ

2
), i = 1, . . . , 4. (4)
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Figure 2: The initial rotor configuration in Theorem 5. The dot shows the
location of (0, 0). The third layer is shaded (see the later proofs).

Consider the particular initial rotor configuration r given by

r
(
(x, y)

)
:=

⌊
1
2

+ 2
π
arg(x− 1

2
, y − 1

2
)
⌋

mod 4 (5)

(where arg(x, y) denotes the angle θ ∈ [0, 2π) such that (x, y) = r(cos θ, sin θ)
with r > 0). See Figure 2.

Fix vertices a, b, c of Z2 with b 6= c and modify p by setting p(b, a) =
p(c, a) = 1. If a = b then also split this vertex into two vertices a and b, let b
inherit all the incoming transition probabilities of the original random walk,
and let a inherit the outgoing probabilities; similarly if a = c. Also modify
the rotor mechanism and the rotor configuration r accordingly.

Theorem 5 (Hitting probabilities for walk on Z2). Let a, b, c be vertices of
Z2 with b 6= c, and consider the rotor walk associated with the random walk,
rotor mechanism and initial rotor configuration described above, started at
vertex a. Then for any t, with h(a) = hb,c(a) and n = nt(b) + nt(c),

∣∣∣∣h(a)− nt(b)

n

∣∣∣∣ ≤
C ln n

n
.

Furthermore, t ≤ C ′n3. Here C,C ′ are finite constants depending on a, b, c.

In contrast to the above result for the rotor walk, for the Markov chain
itself, after n visits to {b, c} the proportion of visits to b differs from its limit
h(a) by K/

√
n in expected absolute value (by the central limit theorem),
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Figure 3: The rotor configuration after 500 visits to b, starting in the config-
uration of Figure 2 with a = c = (0, 0) and b = (1, 1). The rotor directions
are: East=white, North=red, West=green, South=blue.

while the median number of time steps needed to achieve n visits is at least
(K ′)n where K > 0 and K ′ > 1 are constants depending on a, b, c. (The
latter fact is an easy consequence of the standard fact [24] that the expected
number of visits to the origin of Z2 after t steps of random walk is O(ln t) as
t →∞.)

Simulations suggest that a much tighter bound on the discrepancy should
actually hold in the situation of Theorem 5, and in fact the results seem
consistent with a bound of the form const/n. The rotor configurations at
large times are very interesting; see Figure 3. (Also compare with Figure 4
below). Further discussion of these issues will appear in [22].
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1.5 Transfinite walks

As mentioned above, Theorem 1 implies convergence of nt(b)/(nt(b) + nt(c))
to h(a) only if nt(b) + nt(c) → ∞ as t → ∞; we now investigate when this
holds, and what can be done if it does not. We say that a rotor walk is
recurrent if it visits every vertex infinitely often, and transient if it visits
every vertex only finitely often.

Lemma 6 (Recurrence and transience). Any rotor walk associated with an
irreducible Markov chain is either recurrent or transient.

Note in particular that if V is finite and p is irreducible then every rotor
walk is recurrent.

Fix an initial rotor configuration r0 and an initial vertex x0 = a. Suppose
that the rotor walk x0, x1, . . . is transient. Then we can define a rotor config-
uration rω by rω(v) := limt→∞ rt(v) (the limit exists since the sequence rt(v)
is eventually constant). Now restart the particle at a by setting xω := a, and
define a rotor walk xω, xω+1, xω+2, . . . according to the usual rules. If this is
again transient we can set r2ω := limt→∞ rω+t and restart at x2ω := a and so
on. Continue in this way up to the first m for which the walk xmω, xmω+1, . . .
is recurrent, or indefinitely if it is transient for all m. Call this sequence of
walks a transfinite rotor walk started at a.

A transfinite time is a quantity of the form τ = ω2, or τ = mω + t
where m, t are non-negative integers. There is a natural order on transfinite
times given by mω+t < m′ω+t′ if and only if either m < m′ or both m = m′

and t < t′, while mω + t < ω2 for all m and t. For a transfinite walk and a
transfinite time τ we write nτ (v) = #{α < τ : xα = v} for the number of
visits to v before time τ . We sometimes say that the walk goes to infinity
just before each of the times ω, 2ω, . . . at which it is defined.

Lemma 7 (Transfinite recurrence and transience). For an irreducible Markov
chain and a transfinite rotor walk started at a, for any transfinite time τ ,
either nτ (v) is finite for all v or nτ (v) is infinite for all v. Also there exists
M ∈ {1, 2, . . . , ω} such that nMω(v) is infinite for all v and the rotor walk is
defined at all τ < Mω.

Note that while it is not obvious how to algorithmically compute transfi-
nite rotor walks in general, it is at least possible in certain settings, such as
a random walk on the integers with a periodic initial rotor configuration.
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Theorem 8 (Transfinite walks and hitting probabilities). Under the assump-
tions of Theorem 1, suppose further that p is irreducible, and that

lim sup
v∈V

h(v) = 0.

Then for any transfinite time τ = mω + t at which all vertices have been
visited only finitely often,

∣∣∣∣h(a)− nτ (b)

nτ (b) + nτ (c) + m

∣∣∣∣ ≤
K1

nτ (b) + nτ (c) + m
.

Thus the proportion of times the particle hits b as opposed to hitting c or
going to infinity concentrates around h(a). Furthermore, Lemma 7 ensures
that nτ (b)+nτ (c)+m →∞ as τ → Mω, so that the proportion converges to
h(a). The proof of Theorem 8 may be easily adapted to cover the probability
of hitting a single vertex b as opposed to escaping to infinity.

Next, for a vertex b, write g(v) = gb(v) := Ev

∑∞
t=0 1[Xt = b] for the

expected total number of visits to b. Note that this is finite for an irreducible,
transient Markov chain.

Theorem 9 (Transfinite walks and number of visits). Consider an irre-
ducible, transient Markov chain and fix vertices a, b. Suppose that

lim sup
v∈V

g(v) = 0.

Suppose moreover that the quantity

K5 := sup
v∈V

g(v) +
1

2

(
d(b) +

∑
u,v∈V

d(u)p(u, v)
∣∣g(u)− g(v)|

)

is finite. Then for any transfinite walk started at a, and for any transfinite
time τ = mω + t at which all vertices have been visited only finitely often,

∣∣∣∣g(a)− nτ (b)

m

∣∣∣∣ ≤
K5

m
.

It is natural to ask how recurrence and transience of rotor walks are
related to recurrence and transience of the associated Markov chain. The
following variant of an unpublished result of Oded Schramm provides an
answer in one direction: in a certain asymptotic sense, the rotor walk is no
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more transient than the Markov chain. For a transfinite rotor walk started
at vertex a, let In be the number of times the walk goes to infinity before
the nth return to a (i.e. In := max{m ≥ 0 : nmω(a) < n} — this is well
defined by Lemma 7; recall that the walk is restarted at a after each escape
to infinity).

Theorem 10 (Transience density; Oded Schramm). Consider an irreducible
Markov chain, and an associated transfinite rotor walk started at vertex a.
With In as defined above we have

lim sup
n→∞

In

n
≤ Pa(T

+
a = ∞).

In particular we note that for a recurrent Markov chain the right side in
Theorem 10 is zero, so the sequence of escapes to infinity has density zero
in the sequence of returns to a. On the other hand, for a recurrent Markov
chain it is possible for a rotor walk to go to infinity, for example in the case
of simple symmetric random walk on Z, with all rotors initially pointing in
the same direction.

Moreover, for simple random walk on Z2 with all rotors initially in the
same direction, the rotor walk goes to infinity infinitely many times. (To
check this, suppose the rotors rotate anticlockwise and initially point East.
Whenever the particle’s horizontal coordinate achieves a new maximum, it
is immediately sent directly Northwards to infinity. This happens infinitely
often by Lemma 7.) See Figure 4 for a simulation of this remarkable process,
and see [22] for further discussion.

On the other hand, it should be noted that the rotor walk on Z2 is re-
current for the initial configuration in Theorem 5 (see Figure 2). It is also
possible for the rotor walk to be recurrent for a transient Markov chain, for
example in the case of simple random walk on an infinite binary tree, with
all rotors arranged so as to next send the particle towards the root. Lan-
dau and Levine [14] studied the rotor walk on regular trees in great detail,
in particular identifying exactly which sequences (In)n≥0 are possible on the
binary tree. Further work on rotor walks on trees will appear in [1].

1.6 Stack walks

To generalize rotor walks to Markov chains with irrational transition proba-
bilities, we must allow the particle to be routed to a non-periodic sequence
of vertices on its successive visits to a given vertex.
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Figure 4: The rotor configuration after 500 restarts from a = (0, 0), for the
transfinite rotor walk on Z2 with all rotors initially pointing East. The rotor
directions are: East=white, North=red, West=green, South=blue. The red
region extends infinitely far to the North.

Given a set V , a stack mechanism is an assignment of an infinite se-
quence of successors u(1), u(2), . . . to each vertex u ∈ V . The stack walk
started at x0 is a sequence of vertices x0, x1, . . . defined inductively by

xt+1 := x
(nt(xt)+1)
t

where
nt(v) := #{s ∈ [0, t− 1] : xs = v}.

(Note that, in the case of rational transition probabilities considered previ-
ously, the rotor walk can be regarded as a special case of a stack walk, with
the periodic stacks given by u(kd(u)+j) = u(j) for 1 ≤ j ≤ d(u) and k ≥ 0.)

We illustrate the use of stacks with Theorem 12 below on hitting proba-
bilities. The following will enable us to choose a suitable stack mechanism.

Proposition 11 (Low-discrepancy sequence). Let p1, . . . , pn ∈ (0, 1] satisfy∑
i pi = 1. There exists a sequence z1, z2, . . . ∈ {1, . . . , n} such that for all i

and t, ∣∣∣pit−#{s ≤ t : zs = i}
∣∣∣ ≤ 1. (6)
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Let p be a Markov transition kernel on V , and suppose that for each
vertex u there are only finitely many vertices v such that p(u, v) > 0. We
may then choose a stack mechanism according to Proposition 11. More
precisely, for each vertex u, enumerate the vertices v such that p(u, v) > 0 as
v1, . . . , vn, and set pi = p(u, vi). Then let u(j) := vzj

where z is the sequence
given by Proposition 11. Now let a, b, c be distinct vertices and assume that
p(b, a) = p(c, a) = 1 and b(i) = c(i) = a for all i. Write h = hb,c.

Theorem 12 (Stack walks). Under the above assumptions, suppose that

K6 := 1 +
∑

u∈V \{b,c},v∈V :
p(u,v)>0

|h(u)− h(v)|

is finite. For the stack mechanism described above, and any t,
∣∣∣∣h(a)− nt(b)

nt(b) + nt(c)

∣∣∣∣ ≤
K6

nt(b) + nt(c)
.

Proposition 11 can in fact be extended to the case of infinite probability
vectors [2], and Theorem 12 carries over straightforwardly to this case. How-
ever, the result appears to have few applications in this broader context, since∑

v |h(u)− h(v)| is typically infinite when u has infinitely many successors.

1.7 Further Remarks.

History. The rotor-router model was introduced by Priezzhev, Dhar, Dhar
and Krishnamurthy [21] (under the name “Eulerian walkers model”) in con-
nection with self-organized criticality. It has been rediscovered several times,
including in [23] as a tool in load balancing and in [9] in the analysis of
combinatorial games. The present article reports the first work on the close
connection between rotor walks and Markov chains, originating in discus-
sions between the two authors at a meeting in 2003. (Such a connection
was however anticipated in the “whirling tours” theorem of [9], which shows
that for random walk on a tree, the expected hitting time from one vertex
to another can be computed by means of a special case of rotor walk; see
also [22].) A special case of results presented here was reported in [13], and
earlier drafts of the current work provided partial inspiration for some of the
recent progress in [3, 4, 5, 6, 8, 12, 17, 19, 18], which we discuss below.

The idea of stack walks has its roots in Wilson’s approach to random
walks via random stacks; see [25].

13



Time-dependent bounds. We have chosen to focus on upper bounds of
the form Ki/n, where Ki is a fixed constant not depending on time t. If this
latter requirement is relaxed, our proofs may be adapted to give bounds that
are stronger in some specific cases (at the expense of less clean formulations).
Specifically, in each of Theorems 1–4 and 12, the claimed bound still holds if
the relevant constant Ki is replaced with a modified quantity Ki(t) obtained
from Ki by:

(i) multiplying the initial additive term “1” or “max k(v)” or “sup g(v)”
by the indicator 1[xt 6= x0] (so that the term vanishes when the particle
returns to its starting point); and

(ii) multiplying the summand in the sum
∑

u,v by 1[rt(u) 6= r0(u)] (so in
particular terms corresponding to vertices u that have not been visited
by time t vanish).

The same holds for Theorems 8 and 9 in the transfinite case, but replacing t
with τ .

The above claims follow by straightforward modifications to our proofs.
Indeed, our proof of Theorem 5 employs a special case of this argument.
These and other refinements will be discussed more fully in the forthcoming
article [22].

Abelian property. The rotor-router model has a number of interesting
properties that will not be used directly in most of our proofs but which are
nonetheless relevant. In particular, it enjoys an “Abelian property” which
allows rotor walks to be parallelized. Specifically, consider a Markov chain
on a finite set V with one or more sinks, i.e. vertices s with p(s, s) = 1, and
suppose that from every vertex, some sink is accessible (so that the Markov
chain eventually enters a sink almost surely). Then we may run several rotor
walks simultaneously as follows. Start with an initial rotor configuration,
and some non-negative number of particles at each vertex. At each step,
choose a particle and route it according to the usual rotor mechanism; i.e.
increment the rotor at its current vertex and move the particle in the new
rotor direction. Continue until all particles are at sinks. It turns out that
the resulting configuration of particles and rotors is independent of the order
in which we chose to route the particles. This is the Abelian property; see
e.g. [12, Lemma 3.9] for a proof (and generalizations).
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In the situation of Theorem 1, for example, assume that V is finite and
the Markov chain is irreducible, and then modify it to make vertices b and
c sinks. Start n particles at vertex a and perform simultaneous rotor walks.
The Abelian property implies that the number of particles eventually at b is
the same as the number nt(b) of times that b is visited when nt(b)+nt(c) = n
in the original set-up of Theorem 1, and the bound of Theorem 1 therefore
applies.

A similar Abelian property holds for the “chip-firing” model introduced
by Engel [10, 11] (later re-invented by Dhar [7] under the name “abelian
sandpile model” as another model for self-organized criticality). The two
models have other close connections, and in particular there is a natural
group action involving sandpile configurations acting on rotor configurations.
More details may be found in [12] and references therein. Engel’s work was
motivated by an analogy between Markov chains and chip-firing (indeed, he
viewed chip-firing as an “abacus” for Markov chain calculations).

Periodicity. In the case when V is finite, we note the following very simple
argument which gives bounds similar to Theorems 1–4 but with (typically)
much worse constants. Since there are only finitely many rotor configura-
tions, the sequence of vertices ((xt, rt))t≥0 is eventually periodic (with explicit
upper bounds on the period and the time taken to become periodic which
are exponentially large in the number of vertices). Therefore the proportion
of time nt(v)/t spent at vertex v converges as t →∞ to some quantity µ(v),
say, with a discrepancy bounded by const/t. Furthermore, as a consequence
of the rotor mechanism, we have µ(u) =

∑
v∈V p(u, v)µ(v) for all vertices u

(because after many visits to u, the particle will have been routed to each
successor approximately equal numbers of times). Thus µ is a stationary
distribution for the Markov chain. This implies the bound in Theorem 4, ex-
cept with a different (and typically much larger) constant in place of K4π(b).
Similar arguments yield analogues of Theorems 1–3, but only in the case
where V is finite.

Related work. As remarked earlier, rotor walks on trees were studied in
detail by Landau and Levine [14]. Further results on rotor walks on trees will
appear in a forthcoming work of Angel and Holroyd [1], and further refine-
ments and discussions of the results presented here will appear in Propp [22].

Cooper and Spencer [6] studied the following closely related problem. For
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the rotor walk associated with simple symmetric random walk on Zd, start
with n particles at the origin, or more generally distributed in any fashion on
vertices (i1, . . . , id) with i1+· · ·+id even, and apply one step of the rotor walk
to each particle; repeat this t times. (It should be noted that the Abelian
property does not apply here — the result is not the same as applying t rotor
steps to each particle in an arbitrary order; see [12].) It is proved in [6] that
the number of particles at a given vertex differs from the expected number
of particles for n random walks by at most a constant (depending only on
d). Further more precise estimates are proved in dimension d = 1 in [5] and
in dimension d = 2 in [8].

The following rotor-based model for internal diffusion-limited aggregation
(IDLA) was proposed by the second author, James Propp, and studied by
Levine and Peres in [16, 17, 19, 18]. Starting with a rotor configuration on
Zd, perform a sequence of rotor walks starting at the origin, stopping each
walk as soon as it reaches a vertex not occupied by a previously stopped
particle. It is proved in [18] that, as the number of particles n increases, the
shape of the set of occupied vertices converges to a d-dimensional Euclidean
ball; generalizations and more accurate bounds are proved in [17, 19].

2 Proofs of basic results

Theorems 1–4 will all follow as special cases of Proposition 13 below, and the
remaining results will also follow by adapting the same proof. For any Markov
transition kernel p and any function f : V → R we define the Laplacian
∆f : V → R by

∆f(u) :=
∑
v∈V

p(u, v)f(v)− f(u). (7)

Proposition 13 (Key bound). For any rotor walk x0, x1, . . . associated with
p, any function f and any t we have

∣∣∣
t−1∑
s=0

∆f(xs)
∣∣∣ ≤ |f(xt)− f(x0)|+ 1

2

∑
u,v∈V

d(u)p(u, v)
∣∣f(u)− f(v) + ∆f(u)

∣∣.

The proofs of Theorems 1–4 will proceed by applying Proposition 13 to
a suitable f . The proof of Proposition 13 will use the following simple fact.

Lemma 14. If
∑n

i=1 ai = 0 then
∣∣∑j

i=1 ai −
∑k

i=1 ai

∣∣ ≤ 1
2

∑n
i=1 |ai| for all

j, k ∈ [1, n].
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Proof. We prove the stronger statement that |∑i∈S ai| ≤ 1
2

∑n
i=1 |ai| for any

subset S of {1, . . . , n}: assuming without loss of generality that
∑

i∈S ai is
positive, it is at most

∑
ai:ai>0 ai = 1

2
(
∑

i:ai>0 ai −
∑

i:ai<0 ai) = 1
2

∑n
i=1 |ai|.

Proof of Proposition 13. Recall that r0 denotes the initial rotor configura-
tion. For a vertex x and a rotor configuration r, consider the quantity

Φ(x, r) := f(x) +
∑
u∈V

[
φ(u, r(u))− φ(u, r0(u))

]

where

φ(u, j) :=

j∑
i=1

[
f(u)− f(u(i)) + ∆f(u)

]
.

Note that Φ(x, rt) is finite if rt is any rotor configuration encountered by
the rotor walk, since the only non-zero terms in the sum over u are those
corresponding to vertices that the walk has visited (this is the reason for
including the term “−φ(u, r0(u))” in the above definition). Note also that
the definition of the Laplacian (7) and the rotor property (1) imply for all
u ∈ V that

φ(u, d(u)) = 0. (8)

Let us compute the change in Φ produced by a step of the rotor walk
from (xt, rt) to (xt+1, rt+1). The only term in the sum over u that changes is
the one corresponding to u = xt, and thus

Φ(xt+1, rt+1)− Φ(xt, rt) = f(xt+1)− f(xt) + [φ(xt, rt+1(xt))− φ(xt, rt(xt))]

= f(xt+1)− f(xt) + [f(xt)− f(x
(rt+1(xt))
t ) + ∆f(xt)]

= ∆f(xt),

where we have used (8) in the case when rt+1(xt) = 1. Therefore Φ(xt, rt)−
Φ(x0, r0) =

∑t−1
s=0 ∆f(xs). Also Φ(x0, r0) = f(x0), so we obtain

t−1∑
s=0

∆f(xs) = f(xt)− f(x0) +
∑
u∈V

[
φ(u, rt(u))− φ(u, r0(u))

]
. (9)
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In order to bound the last sum in (9), we use (8) together with Lemma
14 and the definition of φ to deduce

∣∣φ(u, rt(u))− φ(u, r0(u))
∣∣ ≤ 1

2

d(u)∑
i=1

∣∣f(u)− f(u(i)) + ∆f(u)
∣∣

=
1

2

∑
v∈V

d(u)p(u, v)
∣∣f(u)− f(v) + ∆f(u)

∣∣ (10)

(since d(u)p(u, v) is the number of i such that u(i) = v). We conclude by
applying the triangle inequality to (9).

Proof of Theorem 1. We will apply Proposition 13 with f = hb,c. Note that
h(b) = 1 and h(c) = 0, while conditioning on the first step of the Markov
chain gives h(u) =

∑
v∈V p(u, v)h(v) for u 6= b, c. Hence, using p(b, a) =

p(c, a) = 1,

∆h(u) =





0, u 6= b, c;

h(a)− 1, u = b;

h(a), u = c,

and thus
∑t−1

s=0 ∆h(xs) = h(a)[nt(b) + nt(c)]− nt(b).
Turning to the other terms in Proposition 13, note that |h(xt)−h(x0)| ≤ 1,

and h(u) − h(v) + ∆h(u) = 0 when u ∈ {b, c} and v = a. Substituting into
Proposition 13 gives

∣∣h(a)[nt(b) + nt(c)]− nt(b)
∣∣ ≤ K1 as required.

Proof of Theorem 2. We will apply Proposition 13 with f = kb. In this case

∆k(u) =

{
−1, u 6= b;

k(a) u = b,

and thus
∑t−1

s=0 ∆k(xs) = (nt(b))(k(a))+(t−nt(b))(−1) = (k(a)+1)nt(b)− t.
Substituting into Proposition 13 and using |k(xt) − k(x0)| ≤ maxv∈V k(v)
and k(b)− k(a) + ∆k(b) = 0 completes the proof.

To prove Theorem 3 we note some elementary facts about Markov chains.

Lemma 15. Let b, c be two distinct vertices of an irreducible recurrent
Markov chain, and let π be a stationary vector. Then π(b)eb,c = π(c)ec,b.
Also the hitting probabilities h = hb,c satisfy ∆h(b) = −eb,c and ∆h(c) = ec,b.
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Proof. Let N denote the number of visits to c before the first return to b
when started from b. It is a standard fact (see e.g. Theorem 1.7.6 in [20])
that EN = π(c)/π(b). On the other hand P(N = n) = eb,c(1− ec,b)

n−1ec,b for
n ≥ 1, so EN = eb,c/ec,b, and the first claim follows. For the remaining claims
we compute ∆h by conditioning on the first step: ∆h(b) = (1−eb,c)−h(b) =
−eb,c and ∆h(c) = ec,b − h(c) = ec,b.

Proof of Theorem 3. We will again apply Proposition 13 with f = h = hb,c

(now without the restriction p(b, a) = p(c, a) = 1). Lemma 15 gives

∆h(u) =





0, u 6= b, c;

−eb,c, u = b;

ec,b, u = c,

and so
∑t−1

s=0 ∆h(xs) = −nt(b)eb,c + nt(c)ec,b. In order to bound the terms in
the last sum in Proposition 13 in the cases u = b, c note that |∆h(u)| ≤ 1 in
these cases, and so, for u = b, c,

∑
v∈V

p(u, v)|h(u)− h(v) + ∆h(u)| ≤ 1 +
∑
v∈V

p(u, v)|h(u)− h(v)|.

Hence Proposition 13 gives
∣∣nt(b)eb,c − nt(c)ec,b

∣∣ ≤ K3.

Now divide through by π(b)eb,c (which equals π(c)ec,b by Lemma 15).

Proof of Theorem 4. We will apply Proposition 13 with f = k = kb. Note
that k(b) = 0, while EbT

+
b = 1 +

∑
v∈V p(b, v)k(v). Also we have EbT

+
b =

1/π(b) (see [20]), hence

∆k(u) =

{
−1, u 6= b;

1/π(b)− 1 u = b.

We bound the term for u = b in Proposition 13 thus:
∑

v∈V p(b, v)|k(b) −
k(v) + ∆k(b)| ≤ 1/π(b) +

∑
v∈V p(b, v)|k(b)− k(v)− 1|. We obtain

∣∣∣nt(b)

π(b)
− t

∣∣∣ ≤ K4,

and multiply by π(b)/t to conclude.
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3 Proofs for walks on Z2

Our proof of Theorem 5 is based on the two lemmas below. For k ≥ 1
we define the kth box B(k) := (−k, k]2 ∩ Z2 and the kth layer ∂B(k) :=
B(k) \B(k − 1). See Figure 2.

Lemma 16. Fix two distinct vertices b, c of Z2, and let h = hb,c be the
hitting probability for the simple random walk on the square lattice. There
exists C = C(b, c) ∈ (0,∞) such that for all positive integers k,

∑

u,v∈B(k):
‖u−v‖1=1

|h(u)− h(v)| ≤ C ln k.

Proof. Fix b, c and write C1, C2, . . . for constants depending on b, c. We claim
first that for all v ∈ Z2,

h(v) = C1 + eb,c[a(v − c)− a(v − b)], (11)

where a : Z2 → R is the potential kernel of Z2. (The function a may be
expressed as a(v) := limn→∞

∑n
t=0[P(Xt = 0)−P(Xt = v)], where (Xt) is the

simple random walk on Z2 — for more information see e.g. [24, Ch. 3] or [15,
Sect. 1.6].) To check (11), we note the following facts about a. Firstly,

a(v) = A + 2
π

ln |v|+ O(|v|−2) as |v| → ∞, (12)

where |v| := ‖v‖2 and A is an absolute constant (see [15, p. 39]). Since
d
dx

(A + 2
π

ln x) = 2
π
x−1 we deduce

|a(v − c)− a(v − b)| ≤ C2|v|−1.

Secondly, writing ∆ for the Laplacian of the random walk on Z2, i.e. ∆f(u) :=
1
4

∑
v:‖u−v‖1=1 f(v)− f(u), we have

∆a(v) = 1[v = 0].

Hence, using Lemma 15 and the fact that π ≡ 1 is a stationary vector for
the random walk, the function v 7→ h(v)− eb,c[a(v− c)−a(v− b)] is bounded
and harmonic, therefore constant, establishing (11).

We now claim that for all u, v with ‖u− v‖1 = 1,

|h(u)− h(v)| ≤ C3|v|−2. (13)
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Once this is established we obtain

∑

u,v∈B(k):
‖u−v‖1=1

|h(u)− h(v)| ≤
k∑

j=1

C4j(C3j
−2) ≤ C ln k.

as required.
Finally, turning to the proof of (13), combining (11) and (12) gives

h(u)− h(v) = C5

(
ln |u− c| − ln |u− b| − ln |v − c|+ ln |v − b|) + O(|v|−2).

In order to bound the above expression, fix u− v to be one of the 4 possible
integer unit vectors, and write v − c = z and c− b = α and u− v = β. For
convenience identify the vector (x, y) with the complex number x + iy and
let | · | denote the modulus. We have

ln |u− c| − ln |u− b| − ln |v − c|+ ln |v − b|

= ln

∣∣∣∣
(z + α)(z + β)

(z + α + β)z

∣∣∣∣ = ln
∣∣∣1 +

α

z
+

β

z
− α

z
− β

z
+ O(|z|−2)

∣∣∣
=O(|z|−2) as z →∞.

Fix a, b, c ∈ Z2, and consider the rotor walk x0, x1, . . . started at a with
rotor mechanism (4) and rotor configuration (5) modified so that p(b, a) =
p(c, a) = 1 as discussed in the paragraph preceding the statement of Theorem
5. We say that the walk enters a new layer at time t if for some k we have
x0, . . . , xt−1 ∈ B(k) but xt 6∈ B(k).

Lemma 17. Under the above assumptions, between any two times at which
the rotor walk enters a new layer, it must visit vertex a at least once. Also,
between any two consecutive visits to vertex a, no vertex is visited more than
4 times.

Proof. We start by proving the first assertion. The reader may find it helpful
to consult Figure 2 throughout. Suppose for a contradiction that a ∈ B(k−
1), and that the rotor walk enters both the layers ∂B(k) and ∂B(k + 1) for
the first time without visiting a in between. Let s be the time of the last visit
to a prior to entering ∂B(k), and let t be the first time at which ∂B(k + 1)
is entered.

We claim that some vertex v emitted the particle at least 5 times during
[s, t]. To prove this, note first that xt−1 ∈ ∂B(k), and consider the following
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two cases. If xt−1 is not one of the four “corner vertices” of ∂B(k), then
immediately after the particle moves from xt−1 to xt ∈ ∂B(k + 1), the rotor
at xt−1 is pointing in the same direction as in the initial rotor configuration
r. Since this rotor did not move before time s, vertex xt−1 must have emitted
the particle at least 4 times during [s, t]. Therefore, xt−1 must have received
the particle at least 4 times from among its 4 neighbors in [s, t] — but it
has not received the particle from xt, therefore by the pigeonhole principle
it received it at least twice from some other neighbor v. And v 6∈ {b, c}
since xt−1 6= a. By considering the rotor at v, we see that this implies that
v emitted the particle at least 5 times during [s, t]. On the other hand, if
xt−1 is a corner vertex of ∂B(k), then on comparing with the initial rotor
configuration r we see that xt−1 has emitted (and hence received) the particle
3 or 4 times, but two of its neighbors lie in ∂B(k + 1), so it did not receive
the particle from them, and the same argument now applies. Thus we have
proved the above claim.

Now let u be the first vertex to emit the particle 5 times during [s, t]. Then
u 6∈ {a, b, c}, otherwise we would have a contradiction to our assumption
that a is visited only once. But now repeating the argument above, u must
have received the particle 5 times, so it must have received it at least twice
from some neighbor, not in {a, b, c}, so this neighbor must have emitted the
particle 5 times by some earlier time in [s, t], a contradiction. Thus the first
assertion is established.

The second assertion follows by an almost identical argument: if some
vertex is visited at least 5 times between visits to a, then considering the
first vertex to be so visited leads to a contradiction.

Proof of Theorem 5. We write C1, C2, . . . for constants which may depend on
a, b, c. We use the proof of Proposition 13 in the case f = h. As in the proof
of Theorem 1, equation (9) becomes

h(a)n− nt(b) = h(xt)− h(a) +
∑

u∈V \{b,c}

[
φ(u, rt(u))− φ(u, r0(u))

]
,

where n = nt := nt(b) + nt(c). However, the term φ(u, rt(u))− φ(u, r0(u)) is
non-zero only for those vertices which have been visited by time t. Now the
first assertion of Lemma 17 implies that at most one new layer is entered for
each visit to a, and thus for each visit to {b, c}. Hence for some C1, all the
vertices visited by time t lie in B(n + C1) (where the constant C1 depends
on the layer of the initial vertex a).
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Now proceeding as in the proof of Proposition 13 and using Lemma 16,

∣∣∣
∑

u∈B(n+C1)\{b,c}

[
φ(u, rt(u))− φ(u, r0(u))

]∣∣∣ ≤ 1
2

∑

u,v∈B(n+C1+1):
‖u−v‖1=1

|h(u)− h(v)|

≤ C ln n.

Combining this with the above facts gives

∣∣h(a)n− nt(b)
∣∣ ≤ 1 + C ln n,

as required.
Finally to prove the bound t ≤ C ′n3, we note by the second assertion of

Lemma 17 that after n visits to vertex a, each of the at most C2n
2 vertices

in B(n + C1) has been visited at most 4n times, so the total number of time
steps is at most 4C2n

3.

4 Proofs for transfinite walks

Proof of Lemma 6. By irreducibility it is enough to show that if u is visited
infinitely often and p(u, v) > 0 then v is visited infinitely often. But this is
immediate since v = u(i) for some i, so the rotor at u will be incremented to
point to v infinitely often.

Proof of Lemma 7. As in the preceding proof, if u is visited infinitely often
and p(u, v) > 0 then v is visited infinitely often, proving the first assertion.
For the second assertion, let M be one greater than the first m for which the
walk xmω, xmω+1, . . . is recurrent, or M = ω if all are transient. Then a is
visited infinitely often before time Mω, and we apply the first assertion.

Proof of Theorem 8. We consider the quantity Φ defined in the proof of
Proposition 13, with f = h = hb,c (as in the proof of Theorem 1). Sup-
pose x0, x1, . . . is a transient rotor walk. We claim that

Φ(xω, rω)− lim
t→∞

Φ(xt, rt) = h(a). (14)

The claim is proved as follows. The assumption of the theorem and the fact
that the walk is transient imply that limt→∞ h(xt) = 0. We clearly have
limt→∞ φ(u, rt(u)) = φ(u, rω(u)) for each u, and by (10) and the definition
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of K1 in Theorem 1 we have for all u and t that |φ(u, rt(u))− φ(u, r0(u))| ≤
F (u) where

∑
u∈V F (u) ≤ 2(K1 − 1). Hence by the dominated convergence

theorem,

lim
t→∞

Φ(xt, rt) = 0 +
∑
u∈V

[
φ(u, rω(u))− φ(u, r0(u))

]
= Φ(xω, rω)− h(a).

We have proved claim (14); thus whenever we “restart from infinity to a”,
the quantity Φ increases by h(a). Combining this with the argument from
the proof of Theorem 1, we get

[
nτ (b) + nτ (c) + m

]
h(a)− nτ (b) = Φ(xτ , rτ )− Φ(x0, r0)

for τ = mω+ t, and the right side is bounded in absolute value by K1 exactly
as in the proof of Theorem 1.

Proof of Theorem 9. We consider the quantity Φ defined in the proof of
Proposition 13, with f = g = gb. Note that

∆g(u) =

{
0, u 6= b;

−1, u = b.

Mimicking the proof of Theorem 8, we obtain

g(a)m− nτ (b) = Φ(xτ , rτ )− Φ(x0, r0),

and we bound the right side as in the previous proofs, noting that when u = b
we have |g(u)− g(v) + ∆g(u)| ≤ |g(u)− g(v)|+ 1.

Our proof of Theorem 10 is based on an unpublished argument of Oded
Schramm (although we present the details in a somewhat different way). We
will need some preparation. It will be convenient to work with Rn := n− In,
i.e. the number of times the transfinite rotor walk returns to a without going
to infinity up to the time of the n return a. We also introduce some modified
Markov chains and rotor mechanisms as follows.

Firstly, replace the vertex a with two vertices a0 and a1. Let V̂ =
(V \ {a}) ∪ {a0, a1} denote this modified vertex set. Introduce a modified
transition kernel p̂ by letting a0 inherit all the outgoing transition probabili-
ties from a, and letting a1 inherit all the incoming transition probabilities to
a (i.e. let p̂(a0, v) = p(a, v) and p̂(v, a1) = p(v, a) for all v ∈ V \ {a}); also let
p̂(a1, a0) = 1 and p̂(a0, a1) = 0, and let p̂ otherwise agree with p.
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Secondly, for a positive integer d, let B(d) denote the set of vertices that
can be reached in at most d steps of the original Markov chain starting
from a, and let ∂B(d) := B(d) \ B(d − 1). Let p̂d be p̂ modified so that
p̂d(b, a0) = 1 for all b ∈ ∂B(d). (Thus, on reaching distance d from a, the
particle is immediately returned to a0).

Fix a rotor mechanism and initial rotor configuration for the original
Markov chain, and modify them accordingly to obtain a rotor walk associated
with p̂d, started at a0. Let Rd

n be the number of times this rotor walk hits a1

before the nth return to a0 (i.e. before the (n + 1)st visit to a0). Also note
that Rn is the number of times the transfinite rotor walk associated with p̂
and started at a0 hits a1 before the nth return to a0.

Lemma 18. For a fixed initial rotor configuration, and any non-negative
integer n, we have Rd

n → Rn as d → ∞ (i.e., Rd
n = Rn for d sufficiently

large).

Proof. For v ∈ V̂ , let Nd
n(v) (respectively Nn(v)) be the number of visits to

vertex v before the nth return to a0 for the (transfinite) rotor walk associated
with p̂d (respectively p̂). We claim that

Nd
n → Nn as d →∞, (15)

where the convergence is in the product topology on NV̂ ; in other words, for
any finite set F ⊂ V̂ , if d is sufficiently large then Nd

n(v) = Nn(v) for all v ∈
F . The required result follows immediately from this, because Rd

n = Nd
n(a1)

and Rn = Nn(a1).
We prove (15) by induction on n. It holds trivially for n = 0 because

Nd
0 and N0 equal zero everywhere. Assume it holds for n − 1. This implies

in particular that the rotor configuration at the time of the (n− 1)st return
to a0 similarly converges as d →∞ to the corresponding rotor configuration
in the transfinite case. Now consider the portion of the transfinite rotor
walk corresponding to p̂, starting just after the (n − 1)st return to a0, up
until the nth return to a0. Consider the following two possibilities. If this
walk is recurrent (so that it returns to a0 via a1) then it visits only finitely
many vertices, so if d is sufficiently large that Nd

n−1 and Nn−1 agree on all the
vertices it visits, then Nd

n and Nn agree also agree on the same set of vertices,
establishing (15) in this case. On the other hand, suppose the aforementioned
walk is transient (so that it goes to infinity before being restarted at a0).

Given a finite set F ⊂ V̂ , let d be such that that when this walk leaves F for
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the last time, it has never been outside B(d). Now let d′ be such that Nd′
n−1

and Nn−1 agree on B(d). Then Nd
n and Nn will agree on F . So (15) holds in

this case also, and the induction is complete.

Lemma 19. For all positive integers n and d we have Rd+1
n ≥ Rd

n.

Proof. This will follow by a special case of the Abelian property for rotor
walks on finite graphs with a sink (see e.g. [12, Lemma 3.9]). First we slightly
modify the mechanism yet again. Consider the rotor mechanism and initial
rotor configuration corresponding to p̂d+1. Remove all the vertices in V \
B(d + 1) (these cannot be visited by the rotor walk started at a0 anyway).
Introduce an additional absorbing vertex s (called the sink), and modify the
transition probabilities so that on hitting a1 or ∂B(d + 1), particles are sent
immediately to s instead of to a0. Modify the rotor mechanism accordingly,
but do not otherwise modify the initial rotor configuration.

We now consider the following multi-particle rotor walk (see e.g. [12]
or the discussion in the introduction for more information). Start with n
particles at a0, and perform a sequence of rotor steps. That is, at each step,
choose any non-sink vertex which has a positive number of particles (if such
exists), and fire the vertex; i.e. increment its rotor, and move one particle
in the new rotor direction. Continue in this way until all particles are at the
sink. [12, Lemma 3.9] states that the total number of times any given vertex
fires during this procedure is independent of our choices of which vertex to
fire.

In particular, consider the firing order in which we first move one particle
repeatedly (so it performs an ordinary rotor walk) until it reaches s, then
move the second particle in the same way, and so on. Thus the number of
times a1 fires is Rd+1

n . Alternatively, we may move one particle until the first
time it reaches ∂B(d) ∪ {s}, then “freeze” it, and move the second particle
until it reaches ∂B(d) ∪ {s}, and so on. At this stage, the number of times
a1 has fired is Rd

n. Now we can continue firing until the frozen particles reach
s. Comparing the two procedures shows Rd+1

n ≥ Rd
n.

Corollary 20. For all positive integers n and d we have Rn ≥ Rd
n.

Proof. Immediate from Lemmas 18 and 19.

Proof of Theorem 10. Since Rn = n−In, the required result is clearly equiv-
alent to lim infn→∞ Rn/n ≥ Pa(T

+
a < ∞). Fix any ε > 0. Then there exists

d such that Pa(T
+
a < T∂B(d)) ≥ Pa(T

+
a < ∞)− ε. Now consider the modified
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rotor walk corresponding to p̂d as defined above. Since the set of vertices
that can be reached from a0 is finite (so in effect the vertex set is finite),
Theorem 1 implies that Rd

n/n → Pa(T
+
a < T∂B(d)) as n →∞. Putting these

facts together with Corollary 20 we obtain

lim inf
n→∞

Rn

n
≥ lim

n→∞
Rd

n

n
= Pa(T

+
a < T∂B(d)) ≥ Pa(T

+
a < ∞)− ε.

5 Proofs for stack walks

In this section we will prove Proposition 11, and use it together with Propo-
sition 21 below to prove Theorem 12. Given a Markov chain and a stack
mechanism, we define the discrepancy functions

Dn(u, v) := #{i ≤ n : u(i) = v} − np(u, v).

Proposition 21. For any Markov chain, any stack walk, any function f and
any t,

t−1∑
s=0

∆f(xs) = f(xt)− f(x0) +
∑

u,v∈V

Dnt(u)(u, v)
[
f(u)− f(v) + ∆f(u)

]
.

Proof. Consider the function

Ψ(t) := f(xt) +
∑
u∈V

ψ(u, nt(u))

where

ψ(u, n) :=
n∑

i=1

[
f(u)− f(u(i)) + ∆f(u)].

As in the proof of Proposition 13 we have
∑t−1

s=0 ∆f(xs) = Ψ(t)−Ψ(0).
From the definition of D we have

ψ(u, n) =
∑
v∈V

[
Dn(u, v) + np(u, v)

][
f(u)− f(v) + ∆f(u)

]
.

But by the definition of the Laplacian,
∑

v∈V p(u, v)[f(u)−f(v)+∆f(u)] = 0;
therefore

ψ(u, n) =
∑
v∈V

Dn(u, v)
[
f(u)− f(v) + ∆f(u)

]
,

and the result follows on substituting.
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Proof of Proposition 11. First note that it suffices to prove the case in which
p1, . . . , pn are all rational. The irrational case then follows by a limiting ar-
gument. Specifically, let pk

1, . . . , p
k
n be rational with pk

i → pi as k →∞, and
let zk

1 , z
k
2 , . . . be a sequence satisfying (6) for the pk

i ’s; then by a compact-
ness argument (since {1, . . . , n} is finite) there is a subsequence (kj) and a

sequence z1, z2 . . . such that z
kj

t → zt for each t, and (zt) then satisfies (6) for
the pi’s.

Now suppose that p1, . . . , pn are rational, and let d be their least common
denominator. Consider the finite bipartite graph G with vertex classes L :=
{1, . . . , d} and R :=

⋃n
i=1 Ri where Ri := {(i,m) : m ∈ {1, . . . , pid}}, and

with an edge from t ∈ L to (i,m) ∈ R if and only if

⌈m− 1

pi

⌉
≤ t ≤

⌈m

pi

⌉
. (16)

We will prove that G has a perfect matching between L and R. Note
first that #L = d =

∑
i pid = #R. We claim that any set T ⊆ L has

at least pi#T neighbors in Ri; from this it follows that it has at least #T
neighbors in R, and the existence of a perfect matching then follows from
Hall’s marriage theorem. To prove the claim, fix i ∈ {1, . . . , n} and note
that (16) is equivalent to pit − pi < m ≤ pit + 1. Therefore in the case
when T is an interval [s, t], it is adjacent to all those pairs (i, m) ∈ Ri for
which m is an integer in (pis− pi, pit + 1]∩ [1, d]; this includes all integers in
(pis− pi, pit + 1) (since pis− pi ≥ 0 and pit + 1 ≤ d + 1). The latter interval
has length pi(t− s+1)+1, therefore it contains at least pi(t− s+1) = pi#T
integers as required. Now consider the case T = [s, t]∪[u, v] (where u > t+1).
If the two intervals have disjoint neighborhoods in Ri, the claim follows by
applying the single-interval case to each and summing. On the other hand
if the neighborhoods of the two intervals intersect, we see from (16) that the
neighborhood in Ri of T is the same as the neighborhood in Ri of the larger
set [s, v], so the claim again follows from the single-interval case. Finally,
the case when T is a union of three or more intervals is handled by applying
the same reasoning to each adjacent pair, proving the claim and hence the
existence of a matching.

Fix a perfect matching of G, and for t = 1, . . . , d, let zt := i where Ri

contains the partner of t. It follows from (16) that if (i,m) and (i,m+1) have
respective partners t and t′ then t < t′. Therefore t and (i,m) are partners
if and only if zt is the mth occurrence of i in the sequence z; from (16) this
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mth occurrence appears between positions dm−1
pi
e and dm

pi
e. Thus,

bpitc ≤ #{s ≤ t : zs = i} ≤ bpitc+ 1,

and it follows that (6) holds for all t ≤ d. Note also that the left side of (6) is
zero for t = d, therefore continuing the sequence z so as to be periodic with
period d completes the proof.

(For an alternative proof of Proposition 11 that applies also to infinite
probability vectors, see [2].)

Proof of Theorem 12. Choosing the stack mechanism according to Proposi-
tion 11 ensures that |Dn(u, v)| ≤ 1 for all u, v and n. Now apply Proposi-
tion 21 to f = h to obtain

∣∣h(a)[nt(b) + nt(c)]− nt(b)
∣∣

≤ |h(xt)− h(x0)|+
∑

u∈V \{b,c},
v∈V

|Dnt(u)(u, v)| · |h(u)− h(v)|,

and conclude by noting that Dnt(u)(u, v) = 0 unless p(u, v) > 0.

Open questions

As the burgeoning literature on Eulerian walk and rotor-routing attests, there
are numerous interesting open problems. Here we focus on a few that are
related to rotor walk on Euclidean lattices.

(i) Can the bound C log n/n in Theorem 5 for the discrepancy in hitting
probabilities for simple random walk on Z2 be improved to C/n? Do
similar results hold in Zd and for other initial rotor configurations?

(ii) For simple random walk on Z2, let all rotors initially point East, and
consider the transfinite rotor walk restarted at the origin after each
escape to infinity. What is the asymptotic behavior of In, the number
of escapes to infinity before the nth return to the origin? Theorem 10
implies that In/n → 0 as n → ∞, but simulations suggest that the
convergence is rather slow.

(iii) For simple random walk on Zd with d ≥ 3, does there exist an initial
rotor configuration for which the rotor walk is recurrent?
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