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Abstract

Let each point of a homogeneousPoissonprocessin Rd independently
be equipped with a random number of stubs (half-edges)according to a
given probabilit y distribution � on the positive integers. We consider
translation-in variant schemesfor perfectly matching the stubs to obtain
a simple graph with degree distribution � . Leaving aside degenerate
cases,we prove that for any � there exist schemesthat give only �nite
components as well as schemes that give in�nite components. For a
particular matching scheme that is a natural extension of Gale-Shapley
stable marriage, we give su�cien t conditions on � for the absenceand
presenceof in�nite components.

1 In tro duction

Let P be a homogeneousPoissonprocesswith intensity 1 on Rd. Furthermore,
let � be a probabilit y measureon the strictly positive integers. We shall study
translation-invariant simple random graphswhoseverticesare the points of P
and where the degreesof the vertices are i.i.d. with law � . Deijfen [7] studied
moment properties achievable for the edgelengths in such graphs. Here, we
shall instead be interestedin the percolation-theoretic questionof whether the
graph contains a component with in�nitely many vertices.

We next formally describe the objects that we will work with. For any
random point measure � we write [�] := f x 2 Rd : �( f xg) > 0g for its
support, or point-set. Let � be a random integer-valued measureon Rd with
the samesupport as P, and which, conditional on P, assignsi.i.d. valueswith
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law � to the elements of [P]. The pair (P; � ) is a marked point processwith
positive integer-valued marks. For x 2 [P] we write D x for � (f xg), which we
interpret as the number of stubs at vertex x.

A matc hing scheme for a marked process(P; � ) is a point processM
on (Rd)2 with the property that almost surely for every pair (x; y) 2 [M ] we
have x; y 2 [P], and such that in the graph G = G(P; M ) with vertex set [P]
and edgeset [M ], each vertex x has degreeD x . The matching schemesunder
consideration will always be simple , meaning that G has no self-loops and
no multiple edges,and translation-in varian t , meaning that M is invariant
in law under the action of all translations of Rd. We say that a translation-
invariant matching is a factor if it is a deterministic function of the Poisson
processP and the mark process� , that is, if it doesnot involve any additional
randomness.We write P and E for probabilit y and expectation on the prob-
abilit y spacesupporting the random triplet (P; � ; M ). For later purposes,we
note that the notion of a matching scheme generalizesfrom the Poissoncase
to generalsimple point processes.

Let (P � ; � � ; M � ) be the Palm version of (P; � ; M ) with respect to P, and
write P� and E� for the associated probabilit y law and expectation operator.
Informally speaking, P� describes the conditional law of (P; � ; M ) given that
there is a point at the origin, with the mark processand the matching scheme
taken as stationary background; see[16, Chapter 11] for more details. Note

that since P is a Possion process,we have [P � ] d= [P] [ f 0g. Let C denote
the volume of the component of the origin vertex for P � , that is, C is the
number of vertices that can be reached by a path in G(P � ; M � ) from the
origin. Our �rst result states that, excluding trivial cases,on one hand it is
always possibleto obtain con�gurations that contain only �nite components
in a translation-invariant way, while on the other hand in�nite components
can always be achieved. Furthermore, a connected graph is possible if and
only if the expected degreeis at least 2.

Theorem 1.1. Let P be a Poissonprocessof intensity 1 in Rd, for any d � 1,
and let D be a random variable with law � .

(a) For any degree distribution � , there is a simple translation-invariant
factor matching schemesuch that P� (C < 1 ) = 1.

(b) If P(D � 2) > 0, then there is a simple translation-invariant factor
matching schemesuch that G has exactly one in�nite component a.s.,
and furthermore P� (C = 1 j D0 � 2) = 1.

(c) The following are equivalent.

(i) E[D ] � 2.
(ii) There exists a simple translation-invariant matching schemefor

which the graph G is a.s. connected.
(iii) There exists a simple factor matching schemefor which the graph

G is a.s. connected.
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The implication (ii) ) (i) of (c) is analogousto various results for percolation
on lattices to the extent that the expecteddegreeof verticesin in�nite clusters
must be at least 2; see,e.g. [11, Theorem 2] and [1, Theorem 6.1].

We move on to consider a particular natural type of matching scheme
which in the special casewhere � (f 1g) = 1 (i.e., deterministically one stub
per vertex) is known as the stable matc hing . See,e.g., [14]. The natural
extension to general degrees,called the stable multi-matc hing , is de�ned
as follows; here and throughout, distance jx � yj and edgelength are de�ned
in terms of Euclidean metric on Rd.

De�nition 1.1. A matching scheme M is said to be a stable multi-
matc hing if a.s., for any two distinct points x; y 2 [P], either they are linked
by an edgeor at least one of x and y hasno incident edgeslonger than jx � yj.

We remark that the concept of a stable multi-matc hing can be de�ned anal-
ogously for general point sets. Here however we will use the term restricted
to the speci�c situation described above. We will seein Proposition 2.2 in
Section 2 below that, for any dimension d � 1 and any � , there is then a
unique stable multi-matc hing. Our main result on the stable multi-matc hing
is the following, giving su�cien t conditions for existenceand non-existenceof
an in�nite cluster. It may be noted that the gap betweenthe conditions in (a)
and (b) is quite large; seeSection 6 for somediscussionon this point.

Theorem 1.2. Consider the stablemulti-matching.

(a) For any d � 2, there exists a k = k(d) such that if P(D � k) = 1, then
P� (C = 1 ) > 0.

(b) For any d � 1 we have that if P(D � 2) = 1 and P(D = 1) > 0, then
P� (C = 1 ) = 0.

The rest of this paper is organizedasfollows. In Section2 weo�er somefurther
background on the model consideredhere. In Section3 we prove Theorem 1.1,
while in Sections4 and 5 we prove parts (a) and (b), respectively, of Theorem
1.2. Finally, in Section 6 we briey mention someopen problems and scope
for further work.

2 Background and preliminaries

2.1 Random graph models with i.i.d. degrees

Random graphs with prescribed degree distribution have been extensively
studied in non-spatial settings; seee.g. [2], [3], [4], [5], [19] and [20]. Dei-
jfen and Meester [9] studied the problem of constructing translation-invariant
graphs with Z as vertex set and i.i.d. degreesassignedto the vertices. They
focussedon the questionof what moment propertieson edgelengthsareachiev-
able. Deijfen and Jonasson[8] obtained further results in this direction, which
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(a) P(D = 1) = 1 � P(D = 2) = 0:05.

(b) P(D = 2) = 1

Figure 1: Stablemulti-matc hings on the torus, with given degreedistributions.
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(a) P(D = 3) = 1 � P(D = 2) = 0:05.

(b) P(D = 3) = 1

Figure 2: Stablemulti-matc hings on the torus, with given degreedistributions.
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Jonasson[15] extendedto more generaldeterministic lattices. Finally Deijfen
[7] consideredthe sameproblem for the PoissonprocessP on Rd, which is the
setting we are concernedwith here.

2.2 Stable matc hings and stable multi-matc hings

The concept of stable matchings goes back to Gale and Shapely [10], and
has been extensively studied ever since. Holroyd and Peres [14] considered
the caseof matching Poissonpoints in Rd, while Holroyd et al. [13] went on
to consider bipartite matching of two independent Poissonprocesses.These
last two referencesprovide constructions that will be useful to us in later
sections. We isolate the relevant �ndings in the following result concerningthe
existenceof matchings schemeswith constant degree1 in translation-invariant
point processes.The in tensit y of a translation-invariant point processis the
expected number of points in a �xed set of unit volume. A set U � Rd is
said to be non-equidistan t if there are no distinct points x; y; u; v 2 U with
jx � yj = ju � vj or jx � yj = jy � vj, while a descending chain is an in�nite
sequencef x i g � U such that jx i � x i � 1j is strictly decreasing.

Prop osition 2.1 (Existence of matchings).

(a) Let R be translation-invariant point processeson Rd with �nite inten-
sity, and assumethat a.s. [R ] is non-equidistant and has no descending
chains. Then a factor matching schemefor R with constant degree 1
exists.

(b) Let R and S be point processeson Rd, jointly ergodic under translations,
and with equal �nite intensities. Assumethat [R ] [ [S] is almost surely
non-equidistant and has no descending chain. Then there exists a factor
matching schemewith constant degree 1 for [R ][ [S], having the property
that every point in [R ] is linked to a point in [S] and vice versa.

Proof. As an examplethat proves(a), we can take the stable matching, whose
existenceand uniquenessis establishedin [14, pp. 10-11]. For (b) we can take
the stable bipartite matching of R and S (i.e. the stable matching where two
points that are either both in R or both in S are postulated to have distance
1 , while the distancebetweenother pairs of points is the usualEuclideanone),
whoseexistenceand uniquenessis establishedin of [13, Proposition 9].

We remark at this point that the PoissonprocessP satis�es the assump-
tions of Proposition 2.1 (a), becauseit satis�es the no descendingchains prop-
erty as �rst noted in [12]; seealso [6].

Moving on to stable multi-matc hings, considerthe following procedurefor
matching the stubs of (P; � ). In a set of points S � Rd, call a distinct pair
x; y 2 S mutually closest if x is the closest point to y in S n f yg, and
vice-versa.
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Step 1. Consider the set [P] of all points. An edgeis created between each
mutually closestpair in this set, and one stub is removed from each of
thesepoints.

Step 2. Consider the set of all points that still have at least one stub after
step 1. Two such points are called compatible if no edgewas created
between them in step 1. An edge is created between each compatible
mutually closestpair in this set, and one stub is removed from each of
thesepoints.

...

Step n. Consider the set of all points that still have at least one stub. Two
such points are called compatible if no edgehas been created between
them. An edgeis createdbetweeneach compatible mutually closestpair
in this set, and one stub is removed from each of thesepoints.

...

It is immediate that this procedurewill not produceself-loops or multiple
edges,and the resulting processis clearly translation-invariant. We will show
that a.s. all stubs are eventually matched, and moreover that the resulting
graph is the unique stable multi-matc hing of (P; � ).

Prop osition 2.2. Let (P; � ) be a marked Poisson processas before. Almost
surely, the iterative multi-matching procedure described above exhauststhe set
of stubs, and the limiting graph (after an in�nite number of iterations) is a
stablemulti-matching. No other stablemulti-matching of (P; � ) exists.

Proof. For the casewhere � (f 1g) = 1 this is an application the result from
[14] mentioned in the proof of Proposition 2.1 (a). The general case is a
straightforward adaptation of their argument, as follows.

Let P0 be the processof points with at least one unmatched stub on them
after the above matching procedureis completed. Then P 0 is an ergodic point
processand hencehas either a.s. in�nitely many points or a.s. no points. To
rule out the former case, call two points in [P 0] compatible if they do not
have an edgebetweenthem in the con�guration obtained from the matching
procedure. Then createa directed graph G0 with [P0] asvertex set by drawing
a directed edgefrom each point to its nearestcompatible point (which exists
becausethe initial numbersof stubs were�nite). Somethought revealsthat G0

cannot contain cyclesof length more than two, and that each �nite component
must contain preciselyonecycle of length two. However, a cycle of length two
is also impossible,sinceit corresponds to two mutually closestpoints with no
edgebetween them and an unmatched stub at each point, and betweensuch
points an edgewould indeedhave beencreatedat somestagein the matching
procedure. Hence G0 has no �nite components, and no cycles. This implies
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that if [P0] is non-empty, then following the outgoing edgesstarting at any
x 2 [P0] yields a descendingchain. Since descendingchains do not exist P
(and hencenot in P0), we concludethat [P0] is a.s. empty, as desired.

That the resulting multi-matc hing is stable follows from the de�nition: an
unstable pair of points would have had an edgecreatedbetweenthem at some
stage of the matching procedure. That it is the unique matching with this
property follows by induction over the stagesin the algorithm to show that
each edgethat is present in the resulting con�guration must be present in any
stable matching of the stubs.

Remark 2.1. Note that the given procedure works and proves Proposition
2.2 in the greater generality where the PoissonprocessP is replaced by any
point processsatisfying the requirements of Proposition 2.1.

Remark 2.2. We will later want to apply the given procedure in situations
wheresomepairs of verticesalready have an edgebetweenthem and additional
connectionsbetweensuch verticesare prohibited. Provided the existing edges
form a translation-invariant process,the proof of Proposition 2.2 shows that
the processstill exhausts all remaining stubs, and results in a translation-
invariant process.

2.3 Mass transp ort

The so-calledmasstransport method in percolation theory was originally de-
veloped for the setting of nonamenablelattice (see [1] for background) but
has turned out to be a convenient tool also for the more familiar setting of
processesliving on Zd or Rd. Here we formulate a special caseadapted to the
particular needsof the present paper. We de�ne a mass transp ort to be a
random measureT on (Rd)2 that is invariant in law under translations of Rd,

that is, T(A + x; B + x) d= T(A; B ) for all Borel A; B � Rd and x 2 Rd, where
we write T(A; B ) := T(A � B ). We interpret T(A; B ) as the amount of mass
transported from A to B . Let Q denote the unit cube [0; 1)d.

Lemma 2.1 (Mass Transport Principle) . Let T be a masstransport. Then

E T(Q; Rd) = E T(Rd; Q) :

Proof.

E T(Q; Rd) =
X

z2 Zd

E T(Q; Q + z) =
X

z2 Zd

E T(Q � z; Q) = E T(Rd; Q) :

3 An ything is possible

The task in this section is to prove Theorem 1.1, and we begin with part (a).
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Proof of Theorem 1.1 (a). We needto describe a factor matching schemethat
givesonly �nite components. To this end, let Pn denote the processof points
x 2 [P] with D x = n (recall that D x denotesthe number of stubs attached to
x). We will partition [Pn ] into groups of sizen + 1. The con�guration is then
taken to consist of complete graphs on each of thesegroups.

Take n such that Pn is non-empty. To partition [Pn ], we assign each
point in [Pn ] a type i 2 f 1; : : : ; n + 1g as follows. Let R � be the distance
from the origin to the closestother point in the Palm version of Pn and let
0 = r0; r1; : : : ; r n ; rn+1 = 1 be such that

P� (r i � 1 < R� � r i ) =
1

n + 1
; i = 1; : : : ; n + 1: (1)

For x 2 [Pn ], let Rx denote the distance to the nearest other point in [Pn ].
We assign x 2 [Pn ] type i if r i � 1 < Rx � r i , and let P i

n be the processof
points of Pn of type i . Note that this assignment involves no randomness
beyond the Poisson processitself, and that for each given n, the processes
P1

n ; : : : ; Pn+1
n have equal intensities and are jointly ergodic under translations.

By Proposition 2.1 (b), this meansthat for each i = 1; : : : ; n we can �nd a
matching schemethat matcheseach type i point to a unique type i + 1 point
and vice versa. The components of the graph obtained by taking the union of
thesematchings partition [Pn ] into groupsof sizen + 1 with onepoint of each
type in each group.

For the proofs of parts (b) and (c) of Theorem 1.1 the following lemma
will be useful.

Lemma 3.1. For a Poisson processwith exactly 2 stubson each point, there
exists a factor matching schemein which G hasa single component consisting
of a doubly in�nite path.

Proof. This is contained in the proof of [14, Theorem 1]. For expository pur-
poses,let us neverthelesssay a few words about how it is proved. The main
step is to construct, in a translation-invariant way, a one-endedtree whose
vertex set is [P]. Once that is done, the single doubly in�nite path is easily
constructed from the tree by �rst ordering the children of each vertex ac-
cording to distance from the parent, then ordering all vertices according to
depth-�rst search, and �nally linking each pair vertices that fall next to each
other in this ordering by an edge.

Remark 3.1. If we relax the requirement in Lemma 3.1 to ask for a union of
doubly in�nite paths rather than a single in�nite path (this will be enoughfor
our proof of Theorem 1.1 (b) but not for the proof of Theorem 1.1 (c)), then
the tree construction of [14] can be replaced by the following construction:
De�ne the cone V = f y 2 Rd : y1 � j(y2; : : : ; yd)jg, where y = (y1; : : : ; yd),
and, for x 2 [P], put a directed edgeto the (almost surely unique) point in
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(x+ V) \ [P] whose�rst coordinate is minimal amongall points in (x+ V) \ [P].
The resulting graph is clearly a forest and it is shown in [14, pp. 10-11] that
the trees are indeed one-ended. Directed in�nite paths can then be created
from each tree as in the proof of Lemma 3.1.

Proof of Theorem 1.1 (b). It is su�cien t to provide a factor matching scheme
where all vertices of degreeat least 2 belong to a single in�nite component.

To match the stubs in the Poisson con�guration in such a way that an
in�nite component is obtained weproceedasfollows. First considerall vertices
of degreeat least 2 and create in a translation-invariant and deterministic
way a directed in�nite path that contains all of them; this is possible by
Lemma 3.1 (or, if we opt for a union of in�nite paths which is su�cien t for
the existence but not for the uniquenessof the in�nite component, by the
more elementary result in Remark 3.1). When this is done we are left with a
reduced stub con�guration. This is then matched up using the stable multi-
matching describedprior to Proposition 2.2with the obvious modi�cation that
we do not allow connectionsbetweenpoints that already have an edgebetween
them arising from the connectionsalong the paths. Proposition 2.2 along with
Remark 2.2 guarantee that this indeed leadsto a multi-matc hing.

For the proof of Theorem 1.1 (c), one more lemma { a generalization of
Proposition 2.1 (b) { will be convenient.

Lemma 3.2. Let � be a probability measure on the strictly positive integers
and let X be a random variable with law � . Let R and S be translation-
invariant point processeson Rd, jointly ergodic under translations, and with
�nite intensities � R and � S satisfying

� R � E[X ]� S : (2)

Assign degree 1 to each point in R and assign i.i.d. degrees with law � to the
points in S. If [R ][ [S] is almost surely non-equidistant and hasno descending
chains, then there exists a translation-invariant partial matching scheme,a
deterministic function of (R ; S), that matcheseach point in [R ] to a stub in
[S]. If (2) holdswith equality, then the procedure also exhaustsall stubsin [S].

Proof. De�ne

m = inf

(

j :
jX

i =1

P(X � i )� S � � R

)

(with m = 1 if (2) holds with equality) and, if m � 2, let

pi =
P(X � i )� S

� R
; i = 1; : : : ; m � 1;

and if m < 1 let pm = 1�
P m� 1

i=1 pi . If m = 1, just let p1 = 1. As in the proof
of Theorem 1.1 (a), we let R � be the distance from the origin to the closest
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other point in the Palm version of R and, analogously to (1), we de�ne real
numbers 0 < r 1 < � � � < r m� 1 such that

P� (R� � r1) = p1

P� (r1 < R� � r2) = p2
...

P� (rm� 2 < R� � rm� 1) = pm� 1

P� (R� > rm� 1) = pm :

For x 2 [R], say that x is of type i 2 f 1; : : : ; m � 1g if r i is the �rst number
in the ordered sequencer 1 < � � � < r m� 1 that exceedsthe distance from x to
the nearest other point in [R ], and of type m if the distance from x to the
nearestother point in [R ] is larger than r m� 1. This divides the processR into
processesR i (i = 1; : : : ; m) with intensities � R pi . Write Si for the processof
vertices in S with degreeat least i . By the choice of pi , for i = 1; : : : ; m � 1,
the intensity of R i coincideswith the intensity of Si , and condition (2) implies
that the intensity of R m is at most by the intensity of Sm (indeed, the intensity
of R m is � R �

P m� 1
i=1 P(X � i )� S which doesnot exceedP(X � m)� S by the

choice of m).
Now, for each i = 1; : : : ; m, match the points of R i to the points of Si

using Proposition 2.1 (b). For i = 1; : : : ; m � 1 we get a perfect matching of
the points (since the intensities of the processescoincide) and, for i = m, it is
not di�cult to seethat all points in R m get matched up (while somepoints
in Sm may not be used).

Proof of Theorem 1.1 (c). To show that conditions (i), (ii) and (iii) are equiv-
alent, it su�ces to show that (iii) ) (ii) ) (i) ) (iii). Since (iii) ) (ii) is trivial,
we only needto show that (i) ) (iii) and that (ii) ) (i).

To prove (i) ) (iii), �rst note that the matching scheme described in the
proof of Theorem 1.1 (b) givesa connectedgraph as soon as all vertices have
degreeat least 2 (provided we usethe construction in Lemma 3.1 rather than
the one in Remark 3.1). To handle the casewhere P(D = 1) > 0, let X be
a random variable distributed as D � 2 conditional on that D � 3 and note
that E[D ] � 2 implies that

P(D = 1) � E[X ]P(D � 3) (3)

with equality if and only if E[D ] = 2.
Consider �rst the caseE[D ] = 2. For a matching schemehere, �rst employ

the scheme in the proof of Theorem 1.1 (b) in order to connect up all points
in [R ] that are assigneddegree2 or more into an in�nite path. This leavesthe
points that are assigneddegree1, plus the points initially assigneddegree3
or more, each having two of their stubs already matched. Since(3) holds with
equality, Lemma 3.2 is exactly tailored to produce a factor matching of the
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degree1 points to the unmatched stubs of the degree� 3 points. This gives
a connectedgraph, so the caseE[D ] = 2 is settled.

For the caseE[D ] > 2 we proceedas with E[D ] = 2 by �rst constructing
the in�nite path and then connecting up degree1 points to it by the scheme
o�ered in the proof of Lemma 3.2. This time, however, the latter scheme,
although resulting in a connectedgraph, fails to use up all the stubs of the
degree� 3 points. Theseremaining stubs can be hooked up to each other by
the stable multi matching schemedescribed prior to Proposition 2.2 with the
restriction that we do not allow connectionsbetweenpoints that already have
an edgebetweenthem on the in�nite path. Using Remark 2.2, this completes
the proof of the (i) ) (iii) implication.

To prove (ii) ) (i) we employ a mass-transport argument. Assume(ii), and
let M be a matching scheme that producesa connectedgraph. Consider the
masstransport where each point x 2 [P] sendsa unit massto y 2 [P] if and
only if x and y are connectedby an edge,and removing that edgewould leave
x in a �nite component. Note that the massM out

x sent from x cannot exceed
1. We claim that, for any vertex x,

Dx � 2 � M in
x � M out

x : (4)

This follows by consideringseparately the two casesM out
x = 1 and M out

x = 0.
When M out

x = 1 we get M in
x = Dx � 1 and (4) holds with equality. When

M out
x = 0 wehave that x is connectedto in�nit y via at least two edgesadjacent

to it, which implies that M in
x � Dx � 2, and again (4) holds.

By the masstransport principle (Lemma 2.1), the expectation of the right-
hand sideof (4) summedover all Poissonpoints x in the unit cube Q is 0. But
the expectation of D x � 2 summedover all Poissonpoints in the unit cube Q
is simply E[D ] � 2 (becausethe Poissonprocesshas intensity 1), so (4) implies
E[D ] � 2, as desired.

4 Percolation in the stable multi-matc hing

In this sectionwe prove Theorem 1.2 (a), that is, we show that if each Poisson
point has su�cien tly many stubs attached to it, then the edgecon�guration
resulting from the stable multi-matc hing percolates. The proof usesthe result
from [18] concerning domination of r -dep enden t random �elds by product
measures,where a random �eld f X zgz2 Zd is said to be r -dependent if for any
two sets A; B 2 Zd at l1 -distance at least r from each other we have that
f X zgz2 A is independent of f X zgz2 B . The version we needis as follows.

Theorem 4.1 (Liggett, Schonmann & Stacey (1997)). For each d � 2 and
r � 1 there exists a pc = pc(d; r ) < 1 such that the following holds. For any
r -dependent random �eld (X z)z2 Zd satisfying P(X z = 1) = 1 � P(X z = 0) � p
with p > pc, the 1's in (X z)z2 Zd percolate almost surely.
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Proof of Theorem 1.2 (a). The idea of the proof is a renormalization proce-
dure. We partition Rd into cubesand declarea cube to be good if it contains
at least one but not too many Poisson points and if the same holds for all
cubes closeto it, where \to o many" and \close" will be speci�ed below. We
then useTheorem4.1 to deducethat the good cubescan bemadeto percolate,
and we observe that, if each Poissonpoint hassu�cien tly many stubs attached
to it, then each point in a good cube must be connectedto each point in its
adjacent cubes in the stable multi-matc hing. This forces the existenceof an
in�nite component in the stable multi-matc hing.

To make this reasoningmore precise,for a 2 R, let aZd = f az : z 2 Zdg
and partition Rd into cubesf Cazgz2 Zd centered at the points of aZd and with
side a. Two cubesCaz and Cay are called adjacent if jz � yj = 1, and we write
m = m(d) for the smallest integer such that the maximal possibleEuclidean
distance betweenpoints in adjacent cubesdoesnot exceedma. For each cube
Caz a super-cube Saz is de�ned, consisting of the cube itself along with all
cubes Cay with y at l1 -distance at most 2m from z. A super-cube hence
contains (4m + 1)d cubes.

Now, call a cube Caz acceptable if it contains at least one and at most
n = n(d) Poissonpoints, where n will be speci�ed below, and it is good if all
cubesin Saz are acceptable. We have that

P(Caz is acceptable) = 1 � P[P(Caz) = 0] � P[P(Caz) > n]:

The �rst probabilit y on the right sidecan be madearbitrarily small by taking
a large, and, for a �xed a, the secondprobabilit y can bemadearbitrarily small
by taking n large. Hence,by choosing �rst a large and then n very large, we
can make the probabilit y that a cube is good comearbitrarily closeto 1. In
particular, by Theorem 4.1, we can make it large enough to guarantee that
the good cubespercolate. Fix such valuesof a and n, let k = n(4m + 1)d and
assumethat P(D � k) = 1. We will show that then each Poisson point in
a good cube is connectedto all Poissonpoints in the adjacent cubes, which
completesthe proof.

Say that a point x 2 [P] with D x stubs desires a point y 2 [P] if y is one
of the Dx nearestpoints to x in [P]. Then a Poissonpoint x in a good cube
Caz desiresall points in the adjacent cubes: For any point y in an adjacent
cube, the distance between x and y is at most ma, and the Euclidean ball
Bma (x) with radius ma centered at x is contained in the supercubeSaz, which
contains at most k Poisson points (indeed, all (4m + 3)d cubes in Saz are
acceptable,which means that each one of them contains at most n points).
SinceDx � k, it follows that y desiresall points in B ma (x), so in particular x
desiresy. Furthermore, each Poissonpoint y in a cube that is adjacent to a
good cube Caz desireseach point in the good cube: Sincethe distancebetween
x and y is at most ma, we have that Bma (y) � B2ma (x). Moreover, the ball
B2ma (x) is contained in the supercube Saz, which contains at most k points.
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HenceBma (y) contains at most k points and, sinceD y � k, it follows that y
desiresall points in Bma (y).

We have shown that each point in a good cube desireseach point in the
adjacent cubesand vice versa. All that remains is to note that two points that
desire each other will indeed be matched. This follows from the de�nition of
the stable multi-matc hing. Henceeach point in a good cube is connectedto
each point in the adjacent cubesand sincethe good cubespercolatethis proves
part (a) of Theorem 1.2.

Remark 4.1. An easymodi�cation of the above proof reveals that the fol-
lowing slightly stronger variant of Theorem 1.2 holds. For any " > 0, there
exists k = k(d; " ) such that if P(D � k) > " , then P� (C = 1 ) > 0.

5 Non-p ercolation in the stable multi-matc hing

In this section we prove Theorem 1.2 (b), that is, we show that if all points
have degreeat most 2 and there is a positive probabilit y for degree1, then
almost surely the stable multi-matc hing gives con�gurations with only �nite
components. The proof is basedon the following lemma.

Lemma 5.1. In any translation-invariant matching scheme,a.s. G has no
component consisting of a singly in�nite path.

Proof. Assume that components consisting of a singly in�nite paths occur
with positive probabilit y, and considerthe masstransport whereeach Poisson
point that sits on a singly in�nite path sendsmass1 to the endpoint of the
path. With positive probabilit y the unit cube Q contains such an endpoint,
and hencethe expectedmassthat is received by Q is in�nite. But the expected
mass that is sent out from Q is at most 1, becausethe expected number of
Poissonpoints in Q is 1. This contradicts the masstransport principle (Lemma
2.1).

Proof of Theorem 1.2 (b). Let the degreedistribution be such that P(D �
2) = 1 and P(D = 1) > 0. The only in�nite components that can occur when
P(D � 2) = 1 are in�nite paths of degree2 vertices that are connectedto each
other and, by Lemma 5.1, any such path has to be bi-in�nite. Assume for
contradiction that such a bi-in�nite path occurswith positive probabilit y. We
will describe a coupled con�guration of vertex degrees,where, with positive
probabilit y, the edgecon�guration remains unchanged except that a doubly
in�nite path is cut apart and turned into two singly in�nite paths. This
conicts with Lemma 5.1.

Given the PoissonprocessP with associated degreesf D xgx2 [P ], we now in-

troducea modi�ed degreeprocessf eDxgx2 [P ]. Conditional on P and f D xgx2 [P ],

let f eDxgx2 [P ] be independent random variables chosenas follows. With prob-

abilit y 1 � e�j x j , we set eDx = Dx , where jxj is the Euclidean distance from
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x to the origin. With the remaining probabilit y e�j x j , the degree eDx is taken
to be an independent random variable with law � . The Poissonpoints that
receive a newly generated degreein eDx are referred to as re-randomized .
Note, crucially, that f eDxgx2 [P ] has the samedistribution as f D x gx2 [P ]. Note
also that

E
X

x2 [P ]

1[x re-randomized]=
Z

Rd
e�j x jdx < 1 :

Hence, by the Borel-Cantelli lemma, the number of re-randomized points is
�nite almost surely.

Now, take a con�guration of Poisson points and associated degreesfor
which the graph G resulting from the stable multi-matc hing contains some
bi-in�nite path. Let eG be the graph resulting from the modi�ed degrees
f eDx gx2 [P ]. Along each such path (x i )1

i= �1 , there must be an edge that is
locally maximal, that is, an edge (x i ; x i +1 ) with jx i +1 � x i j > maxfj x i �
x i � 1j; jx i +2 � x i +1 jg. To seethis, note that if such an edgedid not exist, the
vertices of the path would either constitute a descendingchain, or contain a
single locally minimal edge(de�ned in obvious analogywith locally maximal).
Descendingchains do not occur in Poissonprocesses(as noted in Section 2.2)
while chains with a single minimal edge are ruled out by a mass transport
argument similar to the one on the proof of Lemma 5.1 (let each vertex on
such a path sendunit massto the midpoint of the unique invariant edge). Let
(xm ; xm+1 ) be a locally maximal edge{ say the one with a vertex closestto
the origin. Write A for the event that xm and xm+1 are the only two vertices
that are re-randomizedand that eDxm = eDxm +1 = 1, that is, the degreesof xm

and xm+1 are changedto 1's while the rest of the degreesremain unchanged.
We claim that, on A, the modi�ed graph eG consistsof the sameedgesas

in the original G except that the edgebetween(xm ; xm+1 ) is absent. Indeed,
sincejxm+1 � xm j � maxfj xm+2 � xm+1 j; jxm � xm� 1jg, the edge(xm ; xm+1 ) is
created at a later stagein the matching procedurethan the edges(x m� 1; xm )
and (xm+1 ; xm+2 ). On the event A, no stubs have beenadded or removed in
the modi�ed con�guration except that onestub is taken away from each of x m

and xm+1 . Hence,up until the stage when the edge(xm ; xm+1 ) was created
in the original process,precisely the sameedgesare created in the modi�ed
con�guration. At this stage, the vertices xm and xm+1 do not have a stub on
them, and sothe edge(xm ; xm+1 ) is not createdin the modi�ed con�guration.
After this stage, the situation is as in the original con�guration, and so the
sameedgesare again created.

The above shows that, on A, the modi�ed stable multi-matc hing for the
modi�ed con�guration contains two singly in�nite paths (x m+1 ; xm+2 ; : : :) and
(xm ; xm� 1; : : :). All that remains it to note that, since the number of re-
randomizedverticesis �nite almost surely, the event A haspositiveprobabilit y.
We have hencederived a contradiction with Lemma 5.1.
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6 Op en problems

Closing the gap in Theorem 1.2. Theorem 1.2 provides conditions for
when the stable multi-matc hing contains an in�nite component and for when
it consistsonly of �nite components. These conditions however are quite far
apart and it would be desirable to obtain a more preciseunderstanding for
when the stable multi-matc hing percolates. Consider for instance the case
with exactly two stubs attached to each point, that is, � (f 2g). Do in�nite
components occur in this case?Simulations appear to suggesta positive an-
swer d = 1, but are lessconclusive in d = 2.

Theorem 1.2 (b) statesthat percolation doesnot occur when there are only
degree1 and degree2 vertices. Roughly speaking, this is becausethe degree1
verticesserve asdeadendsin the con�guration. Doesthis phenomenonpersist
when a small proportion of degree3 verticesis added? Doesa su�cien tly large
proportion of degree1 vertices always guarantee non-percolation?

Finally, if degreedistribution � results in an in�nite cluster, and we replace
� by a distribution � 0 that stochastically dominates� , do westill get an in�nite
cluster?
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