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Abstract

Let eadh point of a homogeneoudoissonprocessin R? independertly
be equipped with a random number of stubs (half-edges)accordingto a
given probability distribution  on the positive integers. We consider
translation-in variant schemesfor perfectly matching the stubs to obtain
a simple graph with degreedistribution . Leaving aside degenerate
cases,we prove that for any there exist schemesthat give only nite
componerts as well as schemesthat give in nite componerts. For a
particular matching schemethat is a natural extension of Gale-Shapley
stable marriage, we give su cien t conditions on for the absenceand
presenceof in nite componerts.

1 Intro duction

Let P be a homogeneoud oissonprocesswith intensity 1 on RY. Furthermore,
let bea probability measureon the strictly positive integers. We shall study
translation-invariant simple random graphswhosevertices are the points of P
and where the degreesof the verticesare i.i.d. with law . Deijfen [7] studied
momert properties achievable for the edgelengths in sudch graphs. Here, we
shall instead be interestedin the percolation-theoretic question of whether the
graph contains a componert with in nitely many vertices.

We next formally describe the objects that we will work with. For any
random point measure we write [] := fx 2 RY: (fxg) > Og for its
support, or point-set. Let be a random integer-valued measureon R with
the samesupport asP, and which, conditional on P, assignsi.i.d. valueswith
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law to the elemens of [P]. The pair (P; ) is a marked point processwith
positive integer-valued marks. For x 2 [P] we write Dy for (fxg), which we
interpret asthe number of stubs at vertex x.

A matc hing scheme for a marked process(P; ) is a point processM
on (RY2 with the property that almost surely for every pair (x;y) 2 [M ] we
have x;y 2 [P], and suc that in the graph G = G(P;M ) with vertex set [P]
and edgeset[M ], ead vertex x hasdegreeD . The matching schemesunder
consideration will always be simple , meaning that G has no self-loops and
no multiple edges,and translation-in varian t, meaningthat M is invariant
in law under the action of all translations of RY. We say that a translation-
invariant matching is a factor if it is a deterministic function of the Poisson
processP and the mark process , that is, if it doesnot involve any additional
randomness. We write P and E for probability and expectation on the prob-
ability spacesupporting the random triplet (P; ;M ). For later purposes,we
note that the notion of a matching scheme generalizesfrom the Poissoncase
to generalsimple point processes.

Let (P ; ;M ) bethe Palm versionof (P; ;M ) with respectto P, and
write P and E for the assaiated probability law and expectation operator.
Informally speaking, P describesthe conditional law of (P; ;M ) given that
there is a point at the origin, with the mark processand the matching scheme
taken as stationary badkground; see[16, Chapter 11] for more details. Note

that since P is a Possion process,we have [P ] d [P][ fOg. Let C denote
the volume of the componert of the origin vertex for P , that is, C is the
number of vertices that can be reached by a path in G(P ;M ) from the
origin. Our rst result states that, excluding trivial cases,on one hand it is
always possibleto obtain con gurations that cortain only nite componers
in a translation-invariant way, while on the other hand in nite componeris
can always be achieved. Furthermore, a connectedgraph is possibleif and
only if the expected degreeis at least 2.

Theorem 1.1. Let P be a Poisson processof intensity 1in RY, for anyd 1,
and let D be a random variable with law

(a) For any dgyree distribution , there is a simple translation-invariant
factor matching schemesuchthat P (C< 1) = 1

(b) If P(D 2) > 0, then there is a simple translation-invariant factor
matching schemesuch that G has exactly one in nite component a.s.,
and furthermore P (C=1 jDo 2)= 1

(c) The following are equivalent.

() E[D] 2
(i) There exists a simple translation-invariant matching scheme for
which the graph G is a.s. connected.

(i) There exists a simple factor matching schemefor which the graph
G is a.s. connected.



The implication (ii)) (i) of (c) is analogousto various results for percolation
on lattices to the extent that the expecteddegreeof verticesin in nite clusters
must be at least 2; see,e.g. [11, Theorem 2] and [1, Theorem 6.1].

We move on to consider a particular natural type of matching stcheme
which in the special casewhere (f1lg) = 1 (i.e., deterministically one stub
per vertex) is known as the stable matc hing. See,e.qg., [14]. The natural
extensionto general degrees,called the stable multi-matc hing , is de ned
as follows; here and throughout, distancejx yj and edgelength are de ned
in terms of Euclidean metric on RY.

De nition 1.1. A matching schemeM is said to be a stable multi-
matc hing if a.s., for any two distinct points x;y 2 [P], either they are linked
by an edgeor at least one of x and y has no incident edgeslonger than jx vyj.

We remark that the concept of a stable multi-matc hing can be de ned anal-
ogously for general point sets. Here however we will usethe term restricted
to the specic situation described above. We will seein Proposition 2.2 in
Section 2 below that, for any dimensiond 1 and any , there is then a
unique stable multi-matc hing. Our main result on the stable multi-matc hing
is the following, giving su cien t conditions for existenceand non-existenceof
anin nite cluster. It may be noted that the gap betweenthe conditions in (a)
and (b) is quite large; seeSection 6 for somediscussionon this point.

Theorem 1.2. Consider the stable multi-matching.

(@) For anyd 2, there existsa k = k(d) suchthat if P(D k) = 1, then

P(C=1)>0.
(b) Foranyd 1 wehavethatif P(D 2)= landP(D = 1) > 0, then
P(C=1)=0.

The rest of this paper is organizedasfollows. In Section2 we o er somefurther
badkground on the model consideredhere. In Section3 we prove Theorem 1.1,
while in Sections4 and 5 we prove parts (a) and (b), respectively, of Theorem
1.2. Finally, in Section 6 we briey mertion someopen problems and scope
for further work.

2 Background and preliminaries

2.1 Random graph models with i.i.d. degrees

Random graphs with prescribed degree distribution have been extensively
studied in non-spatial settings; seee.qg. [2], [3], [4], [5], [19 and [20]. Dei-
jfen and Meester[9] studied the problem of constructing translation-invariant
graphs with Z as vertex set and i.i.d. degreesassignedto the vertices. They
focussedon the questionof what momernt propertieson edgelengths are achiev-
able. Deijfen and Jonasson[8] obtained further resultsin this direction, which
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(b) P(D=2)=1
Figure 1: Stable multi-matc hings on the torus, with given degreedistributions.
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(@ P(D=23)=1 P(D = 2)= 0:05.

(b) P(D=3)=1
Figure 2: Stable multi-matc hings on the torus, with given degreedistributions.



Jonasson[15] extendedto more generaldeterministic lattices. Finally Deijfen
[7] consideredthe sameproblem for the PoissonprocessP on RY, which is the
setting we are concernedwith here.

2.2 Stable matc hings and stable multi-matc hings

The concept of stable matchings goes back to Gale and Shapely [10], and
has been extensiwely studied ever since. Holroyd and Peres[14] considered
the caseof matching Poissonpoints in RY, while Holroyd et al. [13] wert on
to consider bipartite matching of two independert Poissonprocesses.These
last two referencesprovide constructions that will be useful to us in later
sections. We isolate the relevant ndings in the following result concerningthe
existenceof matchings schemeswith constart degreel in translation-invariant
point processes.The intensit y of a translation-invariant point processis the
expected number of points in a xed set of unit volume. A setU RY is
said to be non-equidistan t if there are no distinct points x;y;u;v 2 U with

X yj=ju vjorjx vyj=jy Vj, while adescending chain is an in nite

sequenced x;g U sud that jx; Xx; 1j is strictly decreasing.

Prop osition 2.1 (Existence of matchings).

(@) Let R be translation-invariant point processeson RY with nite inten-
sity, and assumethat a.s. [R] is non-equidistant and has no desending
chains. Then a factor matching schemefor R with constant degree 1
exists.

(b) LetR and S be point processeson RY, jointly ergadic under translations,
and with equal nite intensities. Assumethat [R][ [S] is almost surely
non-equidistant and has no desending chain. Then there exists a factor
matching schemewith constant degree 1 for [R][ [S], havingthe property
that every point in [R] is linked to a point in [S] and vice versa.

Proof. As an examplethat proves(a), we cantake the stable matching, whose
existenceand uniquenessis establishedin [14, pp. 10-11]. For (b) we can take
the stable bipartite matching of R and S (i.e. the stable matching where two
points that are either both in R or both in S are postulated to have distance
1 , while the distancebetweenother pairs of points is the usual Euclideanone),
whoseexistenceand uniquenessis establishedin of [13, Proposition 9]. O

We remark at this point that the PoissonprocessP satis es the assump-
tions of Proposition 2.1 (a), becauset satis es the no descendingchains prop-
erty as rst noted in [12]; seealso[6].

Moving on to stable multi-matc hings, considerthe following procedurefor
matching the stubs of (P; ). In a setof points S RY, call a distinct pair
X;y 2 S mutually closest if x is the closestpoint to y in S nfyg, and
vice-versa.



Step 1. Considerthe set [P] of all points. An edgeis created between eath
mutually closestpair in this set, and one stub is removed from ead of
these points.

Step 2. Consider the set of all points that still have at least one stub after
step 1. Two sudc points are called compatible if no edgewas created
betweenthem in step 1. An edgeis created between ead compatible
mutually closestpair in this set, and one stub is remaoved from ead of
thesepoints.

Step n. Consider the set of all points that still have at least one stub. Two
such points are called compatible if no edge has been created between
them. An edgeis createdbetweenead compatible mutually closestpair
in this set, and one stub is remaoved from ead of these points.

It is immediate that this procedurewill not produce self-loops or multiple
edges,and the resulting processis clearly translation-invariant. We will shav
that a.s. all stubs are ewvertually matched, and moreover that the resulting
graph is the unique stable multi-matc hing of (P; ).

Prop osition 2.2. Let (P; ) be a marked Poisson process as before. Almost
surely, the iterative multi-matching procedure descrited alove exhauststhe set
of stubs, and the limiting graph (after an in nite number of iterations) is a
stable multi-matching. No other stable multi-matching of (P; ) exists.

Proof. For the casewhere (flg) = 1 this is an application the result from
[14] mentioned in the proof of Proposition 2.1 (a). The general caseis a
straightforward adaptation of their argumen, as follows.

Let P9be the processof points with at least one unmatched stub on them
after the above matching procedureis completed. Then P %is an ergadic point
processand hencehas either a.s. in nitely many points or a.s. no points. To
rule out the former case, call two points in [P9 compatible if they do not
have an edgebetweenthem in the con guration obtained from the matching
procedure. Then createa directed graph Gwith [P asvertex setby drawing
a directed edgefrom ead point to its nearestcompatible point (which exists
becausethe initial numbersof stubswere nite). Somethought revealsthat G°
cannot contain cyclesof length more than two, and that ead nite componert
must cortain precisely one cycle of length two. Howewer, a cycle of length two
is alsoimpossible,sinceit correspondsto two mutually closestpoints with no
edgebetweenthem and an unmatched stub at ead point, and betweensud
points an edgewould indeed have beencreated at somestagein the matching
procedure. Hence G® has no nite componerts, and no cycles. This implies
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that if [P9 is non-empty, then following the outgoing edgesstarting at any
x 2 [PY yields a descendingchain. Since descendingchains do not exist P
(and hencenot in P9, we concludethat [P9 is a.s. empty, as desired.

That the resulting multi-matc hing is stable follows from the de nition: an
unstable pair of points would have had an edgecreated betweenthem at some
stage of the matching procedure. That it is the unique matching with this
property follows by induction over the stagesin the algorithm to show that
ead edgethat is presen in the resulting con guration must be presen in any
stable matching of the stubs. O

Remark 2.1. Note that the given procedure works and proves Proposition
2.2 in the greater generality where the PoissonprocessP is replaced by any
point processsatisfying the requiremerts of Proposition 2.1.

Remark 2.2. We will later want to apply the given procedurein situations

wheresomepairs of verticesalready have an edgebetweenthem and additional

connectionsbetweensud vertices are prohibited. Provided the existing edges
form a translation-invariant process,the proof of Proposition 2.2 shaws that

the processstill exhausts all remaining stubs, and results in a translation-

invariant process.

2.3 Mass transp ort

The so-calledmasstransport method in percolation theory was originally de-
veloped for the setting of nonamenablelattice (see[1] for badkground) but
has turned out to be a corveniert tool also for the more familiar setting of
processediving on Z9 or RY. Here we formulate a special caseadapted to the
particular needsof the presen paper. We de ne a mass transp ort to be a
random measureT on (RY)? that is invariant in law under translations of RY,
that is, T(A+ x; B + x) £ T(A; B) for all Borel A;B RY and x 2 RY, where
we write T(A;B) ;= T(A B). Weinterpret T(A; B) asthe amount of mass
transported from A to B. Let Q denotethe unit cube [0;1)¢.

Lemma 2.1 (Mass Transport Principle). Let T be a masstransport. Then
ET(Q;RY) = ET(R%Q):

Proof.

X X
ET(Q;RY = ET(Q;Q+2) = ET(Q zQ) =ET(R%Q): O

z22zd z227d

3 Anything is possible

The task in this sectionis to prove Theorem 1.1, and we begin with part (a).



Proof of Theorem 1.1 (a). We needto describe a factor matching schemethat
givesonly nite componerts. To this end, let P,, denote the processof points
x 2 [P] with Dy = n (recall that D, denotesthe number of stubs attached to
x). We will partition [Pp] into groupsof sizen + 1. The con guration is then
taken to consist of complete graphs on ead of thesegroups.

Take n sudh that P, is non-empty. To partition [Pn], we assign eadh

O=rg;r1;:::;rn;rn+1 = 1 besud that
P (r < R r)— 1 . I_ 1 ..... n+ 1 (1)
i1 i) — n+ 1’ = 4. .

For x 2 [P,], let Ry denote the distance to the nearest other point in [Py].
We assignx 2 [Pn] typei if rj 1 < Ry ri, and let P be the processof
points of P, of type i. Note that this assignmen involves no randomness
beyond the Poisson processitself, and that for ead given n, the processes

By Proposition 2.1 (b), this meansthat for eahh i = 1;:::;n wecan nd a
matching schemethat matchesead typei point to a unique typei + 1 point
and vice versa. The componerts of the graph obtained by taking the union of
thesematchings partition [P,] into groupsof sizen + 1 with one point of eat
typein ead group. O

For the proofs of parts (b) and (c) of Theorem 1.1 the following lemma
will be useful.

Lemma 3.1. For a Poisson processwith exactly 2 stubson each point, there
exists a factor matching schemein which G hasa single component consisting
of a doubly in nite path.

Proof. This is contained in the proof of [14, Theorem 1]. For expository pur-
poses,let us neverthelesssay a few words about how it is proved. The main
step is to construct, in a translation-invariant way, a one-endedtree whose
vertex setis [P]. Oncethat is done, the single doubly in nite path is easily
constructed from the tree by rst ordering the children of ead vertex ac-
cording to distance from the parent, then ordering all vertices according to
depth- rst seard, and nally linking ead pair vertices that fall next to each
other in this ordering by an edge. O

Remark 3.1. If werelax the requiremert in Lemma 3.1to askfor a union of
doubly in nite paths rather than a singlein nite path (this will be enoughfor
our proof of Theorem 1.1 (b) but not for the proof of Theorem 1.1 (c)), then
the tree construction of [14] can be replaced by the following construction:
De ne the coneV = fy 2 RY :y;  j(y2:::::Yq)jg, wherey = (y1;::::Yq),
and, for x 2 [P], put a directed edgeto the (almost surely unique) point in



(x+ V)\ [P]whose rst coordinate is minimal amongall points in (x+ V)\ [P].
The resulting graph is clearly a forest and it is shavn in [14, pp. 10-11]that
the trees are indeed one-ended. Directed in nite paths can then be created
from ead tree asin the proof of Lemma 3.1.

Proof of Theorem 1.1 (b). It is su cient to provide a factor matching scheme
where all vertices of degreeat least 2 belongto a single in nite  componert.
To match the stubs in the Poissoncon guration in sud a way that an
in nite  componert is obtained we proceedasfollows. First considerall vertices
of degreeat least 2 and create in a translation-invariant and deterministic
way a directed innite path that contains all of them; this is possible by
Lemma 3.1 (or, if we opt for a union of in nite paths which is su cien t for
the existencebut not for the uniquenessof the in nite componert, by the
more elemertary result in Remark 3.1). When this is done we are left with a
reducedstub con guration. This is then matched up using the stable multi-
matching described prior to Proposition 2.2 with the obvious modi cation that
we do not allow connectionsbetweenpoints that already have an edgebetween
them arising from the connectionsalong the paths. Proposition 2.2 along with
Remark 2.2 guarartee that this indeedleadsto a multi-matc hing. O

For the proof of Theorem 1.1 (c), one more lemma { a generalization of
Proposition 2.1 (b) { will be corvenien.

Lemma 3.2. Let be a prokability measure on the strictly positive integers
and let X be a random variable with law . Let R and S be translation-
invariant point processeson RY, jointly ergadic under translations, and with
nite intensities r and g satisfying

R E[X] s: (2)

Assign degree 1 to each point in R and assigni.i.d. degrees with law to the
points in S. If [R][ [S] is almost surely non-equidistant and hasno desending
chains, then there exists a translation-invariant partial matching scheme,a
deterministic function of (R;S), that matcheseach point in [R] to a stubin
[S]. If (2) holdswith equality, then the procedure also exhaustsall stubsin [S].

Proof. De ne
C )
m=inf j: PXX i) s R
i=1

(with m = 1 if (2) holds with equality) and, if m 2, let

pi = PX_Ds S: i=Liunm L

R
P

andifm< 1 letpp,=1 i“lll pi. If m= 1,just let p1 = 1. Asin the proof
of Theorem 1.1 (a), we let R be the distance from the origin to the closest
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other point in the Palm version of R and, analogouslyto (1), we de ne real
numbers0< rq < < I'm 1 Sud that

PR ry) = p1
P(ra<R 1) = P2
P(rm 2<R 'm 1) = Pm 1
PR >rm 1) = Pm:

For x 2 [R], say that x isof typei 2 f1;:::;m 1gif r; isthe rst number
in the ordered sequencer; < < rm 1 that exceedsthe distance from x to
the nearest other point in [R], and of type m if the distance from x to the
nearestother point in [R] is larger than r, 1. This divides the processR into

verticesin S with degreeat leasti. By the choiceof p;, fori = 1;:::;m 1,
the intensity of R; coincideswith the intensity of Sj, and condition (2) implies
that the intensigy of Ry, is at most by the intensity of Sy, (indeed, the intensity
of Rmis Rr i”;llP(X i) s which doesnot exceedP(X m) s by the
choice of m).

Now, for eadh i = 1;:::;m, match the points of R; to the points of S
using Proposition 2.1 (b). Fori = 1;:::;m 1 we get a perfect matching of
the points (since the intensities of the processesoincide) and, fori = m, it is
not dicult to seethat all points in R, get matched up (while somepoints
in Sy, may not be used). O

Proof of Theorem 1.1 (c). To shaw that conditions (i), (i) and (iii) are equiv-
alert, it suces to shaow that (iii)) (ii)) (i)) (iii). Since(iii)) (i) is trivial,
we only needto shaw that (i)) (iii) and that (ii))) (i).

To prove (i) (iii)), rst note that the matching scheme described in the
proof of Theorem 1.1 (b) givesa connectedgraph as soon as all vertices have
degreeat least 2 (provided we usethe construction in Lemma 3.1 rather than
the one in Remark 3.1). To handle the casewhere P(D = 1) > 0, let X be
a random variable distributed asD 2 conditional on that D 3 and note
that E[D] 2 implies that

P(D =1) EXI]P(D 3) (3)

with equality if and only if E[D] = 2.

Consider rst the caseE[D] = 2. For a matching schemehere, rst employ
the schemein the proof of Theorem 1.1 (b) in order to connectup all points
in [R] that are assigneddegree2 or more into an in nite path. This leavesthe
points that are assigneddegreel, plus the points initially assigneddegree3
or more, ead having two of their stubs already matched. Since(3) holds with
equality, Lemma 3.2 is exactly tailored to produce a factor matching of the
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degreel points to the unmatched stubs of the degree 3 points. This gives
a connectedgraph, sothe caseE[D] = 2 is settled.

For the caseE[D] > 2 we proceedas with E[D] = 2 by rst constructing
the in nite path and then connecting up degreel points to it by the stcheme
o ered in the proof of Lemma 3.2. This time, howewer, the latter scdheme,
although resulting in a connectedgraph, fails to use up all the stubs of the
degree 3 points. Theseremaining stubs can be hooked up to ead other by
the stable multi matching scheme described prior to Proposition 2.2 with the
restriction that we do not allow connectionsbetweenpoints that already have
an edgebetweenthem on the in nite path. Using Remark 2.2, this completes
the proof of the (i)) (iii) implication.

To prove (ii)) (i) we employ a mass-transport argumert. Assume(ii), and
let M be a matching schemethat producesa connectedgraph. Considerthe
masstransport where ead point x 2 [P] sendsa unit massto y 2 [P] if and
only if x and y are connectedby an edge,and removing that edgewould leave
x in a nite componert. Note that the massM 2" sert from x cannot exceed
1. We claim that, for any vertex X,

Dx 2 My M (4)

This follows by consideringseparatelythe two casesM 2t = 1 and MUt = 0.
When M2t = 1 we get M" = Dy 1 and (4) holds with equality. When
M2U = 0 we havethat x is connectedto in nit y via at leasttwo edgesadjacert
to it, which implies that Mj(” Dy 2, and again (4) holds.

By the masstransport principle (Lemma 2.1), the expectation of the right-
hand side of (4) summedover all Poissonpoints x in the unit cube Q is 0. But
the expectation of Dy 2 summedover all Poissonpoints in the unit cube Q
is simply E[D] 2 (becausethe Poissonprocesshasintensity 1), so(4) implies
E[D] 2, asdesired. O

4 Percolation in the stable multi-matc hing

In this sectionwe prove Theorem 1.2 (a), that is, we show that if ead Poisson
point has su cien tly many stubs attached to it, then the edgecon guration

resulting from the stable multi-matc hing percolates. The proof usesthe result
from [18] concerning domination of r-dep endent random elds by product
measureswhere a random eld fX,g,,7q is saidto ber-dependert if for any
two setsA; B 2 Z9 at |; -distance at least r from ead other we have that

fX .02 isindependert of f X,0,05. The version we needis as follows.

Theorem 4.1 (Liggett, Schonmann & Stacey (1997)). For eachd 2 and
r 1 there existsa pc = pc(d;r) < 1 suchthat the following holds. For any
r-dependentrandom eld (X;),,7¢ satisfyingP(X;=1)=1 P(X;=0) p
with p> pc, the 1'sin (X;),,74 percolate almost surely.
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Proof of Theorem 1.2 (a). The idea of the proof is a renormalization proce-
dure. We partition RY into cubesand declarea cubeto be good if it cortains
at least one but not too many Poisson points and if the same holds for all
cubescloseto it, where\to o many” and \close" will be speci ed belonv. We
then useTheorem4.1to deducethat the good cubescanbe madeto percolate,
and we obsene that, if eat Poissonpoint hassu cien tly many stubs attached
to it, then ead point in a good cube must be connectedto ead point in its
adjacert cubesin the stable multi-matc hing. This forcesthe existenceof an
in nite  componert in the stable multi-matc hing.

To make this reasoningmore precise,for a 2 R, let az9 = faz : z 2 29
and partition RY into cubesf C,,0,,74 certered at the points of az9 and with
sidea. Two cubesC,, and C,y are called adjacert if jz yj = 1, and we write
m = m(d) for the smallestinteger such that the maximal possibleEuclidean
distance betweenpoints in adjacert cubesdoesnot exceedma. For ead cube
Caz a super-cube Sy, is de ned, consisting of the cube itself along with all
cubes C5y with y at | -distance at most 2m from z. A super-cube hence
contains (4m + 1)¢ cubes.

Now, call a cube C,, acceptable if it contains at least one and at most
n = n(d) Poissonpoints, wheren will be specied below, and it is good if all
cubesin Sy, are acceptable. We have that

P(C,; is acceptabld = 1 P[P(Caz) = 0] P[P(Caz) > nJ:

The rst probability on the right side can be made arbitrarily small by taking
alarge, and, for a xed a, the secondprobability canbe madearbitrarily small
by taking n large. Hence,by choosing rst a large and then n very large, we
can make the probability that a cube is good comearbitrarily closeto 1. In
particular, by Theorem 4.1, we can make it large enoughto guarartee that
the good cubespercolate. Fix such valuesof a and n, let k = n(4m + 1)¢ and
assumethat P(D k) = 1. We will show that then ead Poisson point in
a good cube is connectedto all Poissonpoints in the adjacert cubes, which
completesthe proof.

Say that a point x 2 [P] with Dy stubs desires a point y 2 [P] if y is one
of the Dy nearestpoints to x in [P]. Then a Poissonpoint x in a good cube
Caz desiresall points in the adjacert cubes: For any point y in an adjacen
cube, the distance between x and y is at most ma, and the Euclidean ball
B ma(X) with radius ma certered at x is contained in the supercube S;,, which
contains at most k Poisson points (indeed, all (4m + 3)% cubesin S,, are
acceptable, which meansthat ead one of them cortains at most n points).
SinceDy Kk, it follows that y desiresall points in B3 (x), soin particular x
desiresy. Furthermore, ead Poissonpoint y in a cube that is adjacert to a
good cube C4; desiresead point in the good cube: Sincethe distancebetween
x and y is at most ma, we have that Bna(y) Boma(X). Moreover, the ball
Boma(X) is cortained in the supercube S;, which cortains at most k points.
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HenceBma(y) contains at most k points and, sinceDy kK, it follows that y
desiresall points in Bpa(Y).

We have shawvn that ead point in a good cube desiresead point in the
adjacert cubesand vice versa. All that remainsis to note that two points that
desire ead other will indeed be matched. This follows from the de nition of
the stable multi-matc hing. Henceead point in a good cube is connectedto
ead point in the adjacert cubesand sincethe good cubespercolatethis proves
part (a) of Theorem 1.2. O

Remark 4.1. An easymaodi cation of the above proof revealsthat the fol-
lowing slightly stronger variant of Theorem 1.2 holds. For any " > 0, there
existsk = k(d;") such that if P(D k) > ",thenP (C=1)> 0.

5 Non-p ercolation in the stable multi-matc hing

In this section we prove Theorem 1.2 (b), that is, we show that if all points
have degreeat most 2 and there is a positive probability for degreel, then
almost surely the stable multi-matc hing gives con gurations with only nite
componerts. The proof is basedon the following lemma.

Lemma 5.1. In any translation-invariant matching scheme,a.s. G has no
component consisting of a singly in nite path.

Proof. Assume that componerts consisting of a singly in nite paths occur
with positive probability, and considerthe masstransport where eat Poisson
point that sits on a singly in nite path sendsmass1 to the endpoint of the
path. With positive probability the unit cube Q contains sud an endpoint,
and hencethe expectedmassthat isreceived by Q isin nite. But the expected
massthat is sert out from Q is at most 1, becausethe expected number of
Poissonpoints in Q is 1. This contradicts the masstransport principle (Lemma
2.1). O

Proof of Theorem 1.2 (b). Let the degreedistribution be suc that P(D
2)=1and P(D = 1) > 0. The only in nite componerts that can occur when
P(D 2)= lareinnite paths of degree2 verticesthat are connectedto eat
other and, by Lemma 5.1, any such path hasto be bi-in nite. Assume for
contradiction that sud a bi-in nite path occurswith positive probability. We
will describe a coupled con guration of vertex degrees,where, with positive
probability, the edgecon guration remains unchanged except that a doubly
in nite path is cut apart and turned into two singly in nite paths. This
conicts with Lemma5.1.

Giventhe PoissonprocessP with assaiated degrees D x gy p, We now in-

troduceamodi ed degreeprocess By gyx,[pj. Conditional onP and f Dy gy, (e,
let f By gy, (p; be independert random variables chosenas follows. With prob-
ability 1 el ¥, we set B, = Dy, wherejxj is the Euclidean distance from
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x to the origin. With the remaining probability el *I, the degreel8, is taken
to be an independert random variable with law . The Poissonpoints that
receive a newly generateddegreein By are referred to as re-randomized
Note, crucially, that f@xgxz[p] has the samedistribution asfDxgy,p;. Note
also that X Z
E 1[x re-randomized]= el Xdx< 1 :
X2[P] Rd

Hence, by the Borel-Cantelli lemma, the number of re-randomized points is
nite almost surely.

Now, take a con guration of Poisson points and assaiated degreesfor
which the graph G resulting from the stable multi-matc hing contains some
bi-in nite path. Let & be the graph resulting from the modied degrees
fBx0x2[p)- Along eat sud path (xi)L , , there must be an edgethat is
locally maximal, that is, an edge (Xi;Xj+1) With jXi+1  X;j > maxfj x;

Xi 1);]Xi+2  Xi+1]g. To seethis, note that if such an edgedid not exist, the
vertices of the path would either constitute a descendingchain, or contain a
singlelocally minimal edge(de ned in obvious analogy with locally maximal).
Descendingchains do not occur in Poissonprocessegas noted in Section 2.2)
while chains with a single minimal edgeare ruled out by a masstransport
argumert similar to the one on the proof of Lemma 5.1 (let ead vertex on
such a path sendunit massto the midpoint of the unique invariant edge). Let
(Xm;Xm+1) be a locally maximal edge{ say the one with a vertex closestto
the origin. Write A for the ewert that X, and xn+1 are the only two vertices
that arere-randomizedand that By, = By, ., = 1,that is, the degreesof xn,
and xm+1 are changedto 1's while the rest of the degreesremain unchanged.

We claim that, on A, the modi ed graph & consistsof the sameedgesas
in the original G exceptthat the edgebetween(xm;Xm+1) is absern. Indeed,
sincejXm+1 Xmj MaxfiXm+2 Xm+1j;iXm Xm 1j0, the edge(Xm;Xm+1) IS
created at a later stagein the matching procedurethan the edges(Xm, 1;Xm)
and (Xm+1 ; Xm+2). On the event A, no stubs have beenadded or removed in
the modi ed con guration exceptthat onestub is taken away from ead of x
and Xm+1 . Hence,up until the stage when the edge (Xm;Xm+1) was created
in the original process,precisely the sameedgesare created in the modi ed
con guration. At this stage,the verticesxy, and xm+1 do not have a stub on
them, and sothe edge(Xm;Xm+1) IS not createdin the modi ed con guration.
After this stage, the situation is asin the original con guration, and so the
sameedgesare again created.

The above shows that, on A, the modi ed stable multi-matc hing for the
modi ed con guration contains two singly in nite paths (Xm+1;Xm+2;:::) and
(Xm:;Xm 1;:::). All that remains it to note that, since the number of re-
randomizedverticesis nite almost surely, the event A haspositive probability.
We have hencederived a cortradiction with Lemma5.1. O
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6 Open problems

Closing the gap in Theorem 1.2. Theorem 1.2 provides conditions for
when the stable multi-matc hing cortains an in nite  componert and for when
it consistsonly of nite componerts. Theseconditions however are quite far
apart and it would be desirableto obtain a more precise understanding for
when the stable multi-matc hing percolates. Consider for instance the case
with exactly two stubs attached to ead point, that is, (f2g). Do in nite
componerts occur in this case? Simulations appear to suggesta positive an-
swer d = 1, but are lessconclusivwe in d = 2.

Theorem 1.2 (b) statesthat percolation doesnot occur whenthere are only
degreel and degree2 vertices. Roughly speaking, this is becausethe degreel
verticesserwe asdeadendsin the con guration. Doesthis phenomenonpersist
whena small proportion of degree3 verticesis added? Doesa su cien tly large
proportion of degreel vertices always guarantee non-percolation?

Finally, if degreedistribution resultsin anin nite cluster, and we replace

by adistribution °that stochastically dominates , dowestill getanin nite
cluster?
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